16

10008609

A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows

Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.

15

10007944

Numerical Investigation of Dynamic Stall over a Wind Turbine Pitching Airfoil by Using OpenFOAM

Computations for two-dimensional flow past a stationary and harmonically pitching wind turbine airfoil at a moderate value of Reynolds number (400000) are carried out by progressively increasing the angle of attack for stationary airfoil and at fixed pitching frequencies for rotary one. The incompressible Navier-Stokes equations in conjunction with Unsteady Reynolds Average Navier-Stokes (URANS) equations for turbulence modeling are solved by OpenFOAM package to investigate the aerodynamic phenomena occurred at stationary and pitching conditions on a NACA 6-series wind turbine airfoil. The aim of this study is to enhance the accuracy of numerical simulation in predicting the aerodynamic behavior of an oscillating airfoil in OpenFOAM. Hence, for turbulence modelling, k-ω-SST with low-Reynolds correction is employed to capture the unsteady phenomena occurred in stationary and oscillating motion of the airfoil. Using aerodynamic and pressure coefficients along with flow patterns, the unsteady aerodynamics at pre-, near-, and post-static stall regions are analyzed in harmonically pitching airfoil, and the results are validated with the corresponding experimental data possessed by the authors. The results indicate that implementing the mentioned turbulence model leads to accurate prediction of the angle of static stall for stationary airfoil and flow separation, dynamic stall phenomenon, and reattachment of the flow on the surface of airfoil for pitching one. Due to the geometry of the studied 6-series airfoil, the vortex on the upper surface of the airfoil during upstrokes is formed at the trailing edge. Therefore, the pattern flow obtained by our numerical simulations represents the formation and change of the trailing-edge vortex at near- and post-stall regions where this process determines the dynamic stall phenomenon.

14

10007300

CFD Modeling of Air Stream Pressure Drop inside Combustion Air Duct of Coal-Fired Power Plant with and without Airfoil

The flow pattern inside rectangular intake air duct of 300 MW lignite coal-fired power plant is investigated in order to analyze and reduce overall inlet system pressure drop. The system consists of the 45-degree inlet elbow, the flow instrument, the 90-degree mitered elbow and fans, respectively. The energy loss in each section can be determined by Bernoulli’s equation and ASHRAE standard table. Hence, computational fluid dynamics (CFD) is used in this study based on Navier-Stroke equation and the standard k-epsilon turbulence modeling. Input boundary condition is 175 kg/s mass flow rate inside the 11-m2 cross sectional duct. According to the inlet air flow rate, the Reynolds number of airstream is 2.7x106 (based on the hydraulic duct diameter), thus the flow behavior is turbulence. The numerical results are validated with the real operation data. It is found that the numerical result agrees well with the operating data, and dominant loss occurs at the flow rate measurement device. Normally, the air flow rate is measured by the airfoil and it gets high pressure drop inside the duct. To overcome this problem, the airfoil is planned to be replaced with the other type measuring instrument, such as the average pitot tube which generates low pressure drop of airstream. The numerical result in case of average pitot tube shows that the pressure drop inside the inlet airstream duct is decreased significantly. It should be noted that the energy consumption of inlet air system is reduced too.

13

10004576

Complex Flow Simulation Using a Partially Lagging One-Equation Turbulence Model

A recently developed one-equation turbulence model
has been successfully applied to simulate turbulent flows with
various complexities. The model, which is based on the
transformation of the k-ε closure, is wall-distance free and equipped
with lagging destruction/dissipation terms. Test cases included shockboundary-
layer interaction flows over the NACA 0012 airfoil, an
axisymmetric bump, and the ONERA M6 wing. The capability of the
model to operate in a Scale Resolved Simulation (SRS) mode is
demonstrated through the simulation of a massive flow separation
over a circular cylinder at Re= 1.2 x106. An assessment of the results
against available experiments Menter (k-ε)1Eq and the Spalart-
Allmaras model that belongs to the single equation closure family is
made.

12

10001690

Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method

Steady three-dimensional and two free surface waves
generated by moving bodies are presented, the flow problem to be
simulated is rich in complexity and poses many modeling challenges
because of the existence of breaking waves around the ship hull, and
because of the interaction of the two-phase flow with the turbulent
boundary layer. The results of several simulations are reported. The
first study was performed for NACA0012 of hydrofoil with different
meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second
simulation a mathematically defined Wigley hull form is used to
investigate the application of a commercial CFD code in prediction of
the total resistance and its components from tangential and normal
forces on the hull wetted surface. The computed resistance and wave
profiles are used to estimate the coefficient of the total resistance for
Wigley hull advancing in calm water under steady conditions. The
commercial CFD software FLUENT version 12 is used for the
computations in the present study. The calculated grid is established
using the code computer GAMBIT 2.3.26. The shear stress k-ωSST
model is used for turbulence modeling and the volume of fluid
technique is employed to simulate the free-surface motion. The
second order upwind scheme is used for discretizing the convection
terms in the momentum transport equations, the Modified HRIC
scheme for VOF discretization. The results obtained compare well
with the experimental data.

11

10001709

Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method

Steady three-dimensional and two free surface waves
generated by moving bodies are presented, the flow problem to be
simulated is rich in complexity and poses many modeling challenges
because of the existence of breaking waves around the ship hull, and
because of the interaction of the two-phase flow with the turbulent
boundary layer. The results of several simulations are reported. The
first study was performed for NACA0012 of hydrofoil with different
meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second
simulation a mathematically defined Wigley hull form is used to
investigate the application of a commercial CFD code in prediction of
the total resistance and its components from tangential and normal
forces on the hull wetted surface. The computed resistance and wave
profiles are used to estimate the coefficient of the total resistance for
Wigley hull advancing in calm water under steady conditions. The
commercial CFD software FLUENT version 12 is used for the
computations in the present study. The calculated grid is established
using the code computer GAMBIT 2.3.26. The shear stress k-ωSST
model is used for turbulence modeling and the volume of fluid
technique is employed to simulate the free-surface motion. The
second order upwind scheme is used for discretizing the convection
terms in the momentum transport equations, the Modified HRIC
scheme for VOF discretization. The results obtained compare well
with the experimental data.

10

10000494

Turbulence Modeling and Wave-Current Interactions

The mechanics of rip currents are complex, involving interactions between waves, currents, water levels and the bathymetry, that present particular challenges for numerical models. Here, the effects of a grid-spacing dependent horizontal mixing on the wave-current interactions are studied. Near the shore, wave rays diverge from channels towards bar crests because of refraction by topography and currents, in a way that depends on the rip current intensity which is itself modulated by the horizontal mixing. At low resolution with the grid-spacing dependent horizontal mixing, the wave motion is the same for both coupling modes because the wave deviation by the currents is weak. In high resolution case, however, classical results are found with the stabilizing effect of the flow by feedback of waves on currents. Lastly, wave-current interactions and the horizontal mixing strongly affect the intensity of the three-dimensional rip velocity.

9

10000829

Vehicle Aerodynamics: Drag Reduction by Surface Dimples

For a bluff body, dimples behave like roughness elements in stimulating a turbulent boundary layer, leading to delayed flow separation, a smaller wake and lower form drag. This is very different in principle from the application of dimples to streamlined body, where any reduction in drag would be predominantly due to a reduction in skin friction. In the present work, a car model with different dimple geometry is simulated using k-ε turbulence modeling to determine its effect to the aerodynamics performance. Overall, the results show that the application of dimples manages to reduce the drag coefficient of the car model.

8

9998125

Turbulence Modeling of Source and Sink Flows

Flows developed between two parallel disks have many engineering applications. Two types of non-swirling flows can be generated in such a domain. One is purely source flow in disc type domain (outward flow). Other is purely sink flow in disc type domain (inward flow). This situation often appears in some turbo machinery components such as air bearings, heat exchanger, radial diffuser, vortex gyroscope, disc valves, and viscosity meters. The main goal of this paper is to show the mesh convergence, because mesh convergence saves time, and economical to run and increase the efficiency of modeling for both sink and source flow. Then flow field is resolved using a very fine mesh near-wall, using enhanced wall treatment. After that we are going to compare this flow using standard k-epsilon, RNG k-epsilon turbulence models. Lastly compare some experimental data with numerical solution for sink flow. The good agreement of numerical solution with the experimental works validates the current modeling.

7

2513

CFD Modeling of High Temperature Seal Chamber

The purpose of this work is fast design optimization of
the seal chamber. The study includes the mass transfer between lower
and upper chamber on seal chamber for hot water application pumps.
The use of Fluent 12.1 commercial code made it possible to capture
complex flow with heat-mass transfer, radiation, Tailor instability,
and buoyancy effect. Realizable k-epsilon model was used for
turbulence modeling. Radiation heat losses were taken into account.
The temperature distribution at seal region is predicted with respect
to heat addition.
Results show the possibilities of the model simplifications by
excluding the water domain in low chamber from calculations. CFD
simulations permit to improve seal chamber design to meet target
water temperature around the seal. This study can be used for the
analysis of different seal chamber configurations.

6

3553

Comparison of Three Turbulence Models in Wear Prediction of Multi-Size Particulate Flow through Rotating Channel

The present work compares the performance of three
turbulence modeling approach (based on the two-equation k -ε
model) in predicting erosive wear in multi-size dense slurry flow
through rotating channel. All three turbulence models include
rotation modification to the production term in the turbulent kineticenergy
equation. The two-phase flow field obtained numerically
using Galerkin finite element methodology relates the local flow
velocity and concentration to the wear rate via a suitable wear model.
The wear models for both sliding wear and impact wear mechanisms
account for the particle size dependence. Results of predicted wear
rates using the three turbulence models are compared for a large
number of cases spanning such operating parameters as rotation rate,
solids concentration, flow rate, particle size distribution and so forth.
The root-mean-square error between FE-generated data and the
correlation between maximum wear rate and the operating
parameters is found less than 2.5% for all the three models.

5

15329

Comparison of Detached Eddy Simulations with Turbulence Modeling

Flow field around hypersonic vehicles is very
complex and difficult to simulate. The boundary layers are squeezed
between shock layer and body surface. Resolution of boundary layer,
shock wave and turbulent regions where the flow field has high
values is difficult of capture. Detached eddy simulation (DES) is a
modification of a RANS model in which the model switches to a
subgrid scale formulation in regions fine enough for LES
calculations. Regions near solid body boundaries and where the
turbulent length scale is less than the maximum grid dimension are
assigned the RANS mode of solution. As the turbulent length scale
exceeds the grid dimension, the regions are solved using the LES
mode. Therefore the grid resolution is not as demanding as pure LES,
thereby considerably cutting down the cost of the computation. In
this research study hypersonic flow is simulated at Mach 8 and
different angle of attacks to resolve the proper boundary layers and
discontinuities. The flow is also simulated in the long wake regions.
Mesh is little different than RANS simulations and it is made dense
near the boundary layers and in the wake regions to resolve it
properly. Hypersonic blunt cone cylinder body with frustrum at angle
5o and 10 o are simulated and there aerodynamics study is performed
to calculate aerodynamics characteristics of different geometries. The
results and then compared with experimental as well as with some
turbulence model (SA Model). The results achieved with DES
simulation have very good resolution as well as have excellent
agreement with experimental and available data. Unsteady
simulations are performed for DES calculations by using duel time
stepping method or implicit time stepping. The simulations are
performed at Mach number 8 and angle of attack from 0o to 10o for
all these cases. The results and resolutions for DES model found
much better than SA turbulence model.

4

12954

A Study of Various Numerical Turbulence Modeling Methods in Boundary Layer Excitation of a Square Ribbed Channel

Among the various cooling processes in industrial
applications such as: electronic devices, heat exchangers, gas
turbines, etc. Gas turbine blades cooling is the most challenging one.
One of the most common practices is using ribbed wall because of
the boundary layer excitation and therefore making the ultimate
cooling. Vortex formation between rib and channel wall will result in
a complicated behavior of flow regime. At the other hand, selecting
the most efficient method for capturing the best results comparing to
experimental works would be a fascinating issue. In this paper 4
common methods in turbulence modeling: standard k-e, rationalized
k-e with enhanced wall boundary layer treatment, k-w and RSM
(Reynolds stress model) are employed to a square ribbed channel to
investigate the separation and thermal behavior of the flow in the
channel. Finally all results from different methods which are used in
this paper will be compared with experimental data available in
literature to ensure the numerical method accuracy.

3

13412

Research on the Correlation of the Fluctuating Density Gradient of the Compressible Flows

This work is to study a roll of the fluctuating density
gradient in the compressible flows for the computational fluid dynamics
(CFD). A new anisotropy tensor with the fluctuating density
gradient is introduced, and is used for an invariant modeling technique
to model the turbulent density gradient correlation equation derived
from the continuity equation. The modeling equation is decomposed
into three groups: group proportional to the mean velocity, and that
proportional to the mean strain rate, and that proportional to the mean
density. The characteristics of the correlation in a wake are extracted
from the results by the two dimensional direct simulation, and shows
the strong correlation with the vorticity in the wake near the body.
Thus, it can be concluded that the correlation of the density gradient
is a significant parameter to describe the quick generation of the
turbulent property in the compressible flows.

2

12149

An Optimized Multi-block Method for Turbulent Flows

A major part of the flow field involves no complicated
turbulent behavior in many turbulent flows. In this research work, in
order to reduce required memory and CPU time, the flow field was
decomposed into several blocks, each block including its special
turbulence. A two dimensional backward facing step was considered
here. Four combinations of the Prandtl mixing length and standard k-
E models were implemented as well. Computer memory and CPU
time consumption in addition to numerical convergence and accuracy
of the obtained results were mainly investigated. Observations
showed that, a suitable combination of turbulence models in different
blocks led to the results with the same accuracy as the high order
turbulence model for all of the blocks, in addition to the reductions in
memory and CPU time consumption.

1

3186

Modeling of Surface Roughness for Flow over a Complex Vegetated Surface

Turbulence modeling of large-scale flow over a vegetated surface is complex. Such problems involve large scale computational domains, while the characteristics of flow near the surface are also involved. In modeling large scale flow, surface roughness including vegetation is generally taken into account by mean of roughness parameters in the modified law of the wall. However, the turbulence structure within the canopy region cannot be captured with this method, another method which applies source/sink terms to model plant drag can be used. These models have been developed and tested intensively but with a simple surface geometry. This paper aims to compare the use of roughness parameter, and additional source/sink terms in modeling the effect of plant drag on wind flow over a complex vegetated surface. The RNG k-ε turbulence model with the non-equilibrium wall function was tested with both cases. In addition, the k-ω turbulence model, which is claimed to be computationally stable, was also investigated with the source/sink terms. All numerical results were compared to the experimental results obtained at the study site Mason Bay, Stewart Island, New Zealand. In the near-surface region, it is found that the results obtained by using the source/sink term are more accurate than those using roughness parameters. The k-ω turbulence model with source/sink term is more appropriate as it is more accurate and more computationally stable than the RNG k-ε turbulence model. At higher region, there is no significant difference amongst the results obtained from all simulations.