International Science Index

2
10007757
Architecture and Students with Autism: Exploring Strategies for Their Inclusion in Society Mainstream
Abstract:

Architecture, as an art and science of designing, has always been the medium to create environments that fulfill their users’ needs. It could create an inclusive environment that would not isolate any individual regardless of his /her disabilities. It could help, hopefully, in setting the strategies that provide a supportive, educational environment that would allow the inclusion of students with autism. Architects could help in the battle against this neuro-developmental disorder by providing the accommodating environment, at home and at school, in order to prevent institutionalizing these children. Through a theoretical approach and a review of literature, this study will explore and analyze best practices in autism-friendly, supportive, teaching environments. Additionally, it would provide the range of measures, and set the strategies to deal with the students with autism sensory peculiarities, and that, in order to allow them to concentrate in the school environment, and be able to succeed, and to be integrated as an important addition to society and the social mainstream. Architects should take into consideration the general guidelines for an autism-friendly built environment, and apply them to specific buildings systems. And that, as certain design elements have great effect on children’s behavior, by appropriating architecture to provide inclusive accommodating environments, the basis for equalization of opportunities is set allowing these individuals a better, normal, non-institutional life, as the discussion presented in this study would reveal.

Paper Detail
32
downloads
1
9119
Emotion Classification for Students with Autism in Mathematics E-learning using Physiological and Facial Expression Measures
Abstract:

Avoiding learning failures in mathematics e-learning environments caused by emotional problems in students with autism has become an important topic for combining of special education with information and communications technology. This study presents an adaptive emotional adjustment model in mathematics e-learning for students with autism, emphasizing the lack of emotional perception in mathematics e-learning systems. In addition, an emotion classification for students with autism was developed by inducing emotions in mathematical learning environments to record changes in the physiological signals and facial expressions of students. Using these methods, 58 emotional features were obtained. These features were then processed using one-way ANOVA and information gain (IG). After reducing the feature dimension, methods of support vector machines (SVM), k-nearest neighbors (KNN), and classification and regression trees (CART) were used to classify four emotional categories: baseline, happy, angry, and anxious. After testing and comparisons, in a situation without feature selection, the accuracy rate of the SVM classification can reach as high as 79.3-%. After using IG to reduce the feature dimension, with only 28 features remaining, SVM still has a classification accuracy of 78.2-%. The results of this research could enhance the effectiveness of eLearning in special education.

Paper Detail
1068
downloads