International Science Index

52
10007185
Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering
Abstract:

Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine.

Paper Detail
90
downloads
51
10007631
Inner and Outer School Contextual Factors Associated with Poor Performance of Grade 12 Students: A Case Study of an Underperforming High School in Mpumalanga, South Africa
Abstract:

Often a Grade 12 certificate is perceived as a passport to tertiary education and the minimum requirement to enter the world of work. In spite of its importance, many students do not make this milestone in South Africa. It is important to find out why so many students still fail in spite of transformation in the education system in the post-apartheid era. Given the complexity of education and its context, this study adopted a case study design to examine one historically underperforming high school in Bushbuckridge, Mpumalanga Province, South Africa in 2013. The aim was to gain a understanding of the inner and outer school contextual factors associated with the high failure rate among Grade 12 students.  Government documents and reports were consulted to identify factors in the district and the village surrounding the school and a student survey was conducted to identify school, home and student factors. The randomly-sampled half of the population of Grade 12 students (53) participated in the survey and quantitative data are analyzed using descriptive statistical methods. The findings showed that a host of factors is at play. The school is located in a village within a municipality which has been one of the poorest three municipalities in South Africa and the lowest Grade 12 pass rate in the Mpumalanga province.   Moreover, over half of the families of the students are single parents, 43% are unemployed and the majority has a low level of education. In addition, most families (83%) do not have basic study materials such as a dictionary, books, tables, and chairs. A significant number of students (70%) are over-aged (+19 years old); close to half of them (49%) are grade repeaters. The school itself lacks essential resources, namely computers, science laboratories, library, and enough furniture and textbooks. Moreover, teaching and learning are negatively affected by the teachers’ occasional absenteeism, inadequate lesson preparation, and poor communication skills. Overall, the continuous low performance of students in this school mirrors the vicious circle of multiple negative conditions present within and outside of the school. The complexity of factors associated with the underperformance of Grade 12 students in this school calls for a multi-dimensional intervention from government and stakeholders. One important intervention should be the placement of over-aged students and grade-repeaters in suitable educational institutions for the benefit of other students.

Paper Detail
35
downloads
50
10006980
A Sociological Study of Rural Women Attitudes toward Education, Health and Work outside Home in Beheira Governorate, Egypt
Authors:
Abstract:
This research was performed to evaluate the attitudes of rural women towards education, health and work outside the home. The study was based on a random sample of 147 rural women, Kafr-Rahmaniyah village was chosen for the study because its life expectancy at birth for females, education and percentage of females in the labor force, were the highest in the district. The study data were collected from rural female respondents, using a face-to-face questionnaire. In addition, the study estimated several factors like age, main occupation, family size, monthly household income, geographic cosmopolites, and degree of social participation for rural women respondents. Using Statistical Package for the Social Sciences (SPSS), data were analyzed by non-parametric statistical methods. The main finding in this study was a significant relationship between each of the previous variables and each of rural women’s attitudes toward education, health, and work outside home. The study concluded with some recommendations. The most important element is ensuring attention to rural women’s needs, requirements and rights via raising their health awareness, education and their contributions in their society.
Paper Detail
82
downloads
49
10006595
Mathematical Study for Traffic Flow and Traffic Density in Kigali Roads
Abstract:

This work investigates a mathematical study for traffic flow and traffic density in Kigali city roads and the data collected from the national police of Rwanda in 2012. While working on this topic, some mathematical models were used in order to analyze and compare traffic variables. This work has been carried out on Kigali roads specifically at roundabouts from Kigali Business Center (KBC) to Prince House as our study sites. In this project, we used some mathematical tools to analyze the data collected and to understand the relationship between traffic variables. We applied the Poisson distribution method to analyze and to know the number of accidents occurred in this section of the road which is from KBC to Prince House. The results show that the accidents that occurred in 2012 were at very high rates due to the fact that this section has a very narrow single lane on each side which leads to high congestion of vehicles, and consequently, accidents occur very frequently. Using the data of speeds and densities collected from this section of road, we found that the increment of the density results in a decrement of the speed of the vehicle. At the point where the density is equal to the jam density the speed becomes zero. The approach is promising in capturing sudden changes on flow patterns and is open to be utilized in a series of intelligent management strategies and especially in noncurrent congestion effect detection and control.

Paper Detail
196
downloads
48
10005698
Self-Perceived Employability of Students of International Relations of University of Warmia and Mazury in Poland
Abstract:
Nowadays, graduates should be prepared for serious challenges in the internal and external labor market. The notion that a degree is a “passport to employment” has been relegated to the past. In the last few years a phenomenon in the form of the increasing unemployment of highly educated young people in EU countries, including Poland has been observed. Empirical studies were conducted among Polish students in the scope of the so-called self-perceived employability review. In this study, a special scale was used which consisted of 19 statements regarding five components: student’s perception of university; field of study; self-belief; state of the external labor market; and, personal knowledge management. The respondent group consisted of final-year master’s students of International Relations at the University of Warmia and Mazury in Olsztyn, Poland. The findings of the empirical studies were compiled using statistical methods: descriptive statistics and inferential statistics. In general, in light of the conducted studies, the self-perceived employability of the Polish students was not high. Limitations of the studies were discussed, as well as the implications for future research in the scope of the students’ employability.
Paper Detail
321
downloads
47
10005067
Statistical Analysis of Interferon-γ for the Effectiveness of an Anti-Tuberculous Treatment
Abstract:
Tuberculosis (TB) is a potentially serious infectious disease that remains a health concern. The Interferon Gamma Release Assay (IGRA) is a blood test to find out if an individual is tuberculous positive or negative. This study applies statistical analysis to the clinical data of interferon-gamma levels of seventy-three subjects who diagnosed pulmonary TB in an anti-tuberculous treatment. Data analysis is performed to determine if there is a significant decline in interferon-gamma levels for the subjects during a period of six months, and to infer if the anti-tuberculous treatment is effective.
Paper Detail
934
downloads
46
10005381
Using Gaussian Process in Wind Power Forecasting
Abstract:
The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator’s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given.
Paper Detail
618
downloads
45
10003242
A Brief Study about Nonparametric Adherence Tests
Abstract:
The statistical study has become indispensable for various fields of knowledge. Not any different, in Geotechnics the study of probabilistic and statistical methods has gained power considering its use in characterizing the uncertainties inherent in soil properties. One of the situations where engineers are constantly faced is the definition of a probability distribution that represents significantly the sampled data. To be able to discard bad distributions, goodness-of-fit tests are necessary. In this paper, three non-parametric goodness-of-fit tests are applied to a data set computationally generated to test the goodness-of-fit of them to a series of known distributions. It is shown that the use of normal distribution does not always provide satisfactory results regarding physical and behavioral representation of the modeled parameters.
Paper Detail
1075
downloads
44
10001278
The Comparison of Parental Childrearing Styles and Anxiety in Children with Stuttering and Normal Population
Abstract:
Family has a crucial role in maintaining the physical, social and mental health of the children. Most of the mental and anxiety problems of children reflect the complex interpersonal situations among family members, especially parents. In other words, anxiety problems of the children are correlated with deficit relationships of family members and improper childrearing styles. The parental child rearing styles leads to positive and negative consequences which affect the children’s mental health. Therefore, the present research was aimed to compare the parental childrearing styles and anxiety of children with stuttering and normal population. It was also aimed to study the relationship between parental child rearing styles and anxiety of children. The research sample included 54 boys with stuttering and 54 normal boys who were selected from the children (boys) of Tehran, Iran in the age range of 5 to 8 years in 2013. In order to collect data, Baum-rind Childrearing Styles Inventory and Spence Parental Anxiety Inventory were used. Appropriate descriptive statistical methods and multivariate variance analysis and t test for independent groups were used to test the study hypotheses. Statistical data analyses demonstrated that there was a significant difference between stuttering boys and normal boys in anxiety (t = 7.601, p< 0.01); but there was no significant difference between stuttering boys and normal boys in parental childrearing styles (F = 0.129). There was also not found significant relationship between parental childrearing styles and children anxiety (F = 0.135, p< 0.05). It can be concluded that the influential factors of children’s society are parents, school, teachers, peers and media. So, parental childrearing styles are not the only influential factors on anxiety of children, and other factors including genetic, environment and child experiences are effective in anxiety as well. Details are discussed.
Paper Detail
1616
downloads
43
10001399
A Study on the Relation among Primary Care Professionals Serving the Disadvantaged Community, Socioeconomic Status, and Adverse Health Outcome
Abstract:
During the post-Civil War era, the city of Nashville, Tennessee, had the highest mortality rate in the United States. The elevated death and disease rates among former slaves were attributable to lack of quality healthcare. To address the paucity of healthcare services, Meharry Medical College, an institution with the mission of educating minority professionals and serving the underserved population, was established in 1876. Purpose: The social ecological framework and partial least squares (PLS) path modeling were used to quantify the impact of socioeconomic status and adverse health outcome on primary care professionals serving the disadvantaged community. Thus, the study results could demonstrate the accomplishment of the College’s mission of training primary care professionals to serve in underserved areas. Methods: Various statistical methods were used to analyze alumni data from 1975 – 2013. K-means cluster analysis was utilized to identify individual medical and dental graduates in the cluster groups of the practice communities (Disadvantaged or Non-disadvantaged Communities). Discriminant analysis was implemented to verify the classification accuracy of cluster analysis. The independent t-test was performed to detect the significant mean differences of respective clustering and criterion variables. Chi-square test was used to test if the proportions of primary care and non-primary care specialists are consistent with those of medical and dental graduates practicing in the designated community clusters. Finally, the PLS path model was constructed to explore the construct validity of analytic model by providing the magnitude effects of socioeconomic status and adverse health outcome on primary care professionals serving the disadvantaged community. Results: Approximately 83% (3,192/3,864) of Meharry Medical College’s medical and dental graduates from 1975 to 2013 were practicing in disadvantaged communities. Independent t-test confirmed the content validity of the cluster analysis model. Also, the PLS path modeling demonstrated that alumni served as primary care professionals in communities with significantly lower socioeconomic status and higher adverse health outcome (p < .001). The PLS path modeling exhibited the meaningful interrelation between primary care professionals practicing communities and surrounding environments (socioeconomic statues and adverse health outcome), which yielded model reliability, validity, and applicability. Conclusion: This study applied social ecological theory and analytic modeling approaches to assess the attainment of Meharry Medical College’s mission of training primary care professionals to serve in underserved areas, particularly in communities with low socioeconomic status and high rates of adverse health outcomes. In summary, the majority of medical and dental graduates from Meharry Medical College provided primary care services to disadvantaged communities with low socioeconomic status and high adverse health outcome, which demonstrated that Meharry Medical College has fulfilled its mission. The high reliability, validity, and applicability of this model imply that it could be replicated for comparable universities and colleges elsewhere.
Paper Detail
1294
downloads
42
10001434
The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models
Authors:
Abstract:
This paper analyzes the conceptual framework of three statistical methods, multiple regression, path analysis, and structural equation models. When establishing research model of the statistical modeling of complex social phenomenon, it is important to know the strengths and limitations of three statistical models. This study explored the character, strength, and limitation of each modeling and suggested some strategies for accurate explaining or predicting the causal relationships among variables. Especially, on the studying of depression or mental health, the common mistakes of research modeling were discussed.
Paper Detail
3348
downloads
41
9999875
Earthquake Classification in Molluca Collision Zone Using Conventional Statistical Methods
Abstract:

Molluca Collision Zone is located at the junction of the Eurasian, Australian, Pacific and the Philippines plates. Between the Sangihe arc, west of the collision zone, and to the east of Halmahera arc is active collision and convex toward the Molluca Sea. This research will analyze the behavior of earthquake occurrence in Molluca Collision Zone related to the distributions of an earthquake in each partition regions, determining the type of distribution of a occurrence earthquake of partition regions, and the mean occurence of earthquakes each partition regions, and the correlation between the partitions region. We calculate number of earthquakes using partition method and its behavioral using conventional statistical methods. In this research, we used data of shallow earthquakes type and its magnitudes ≥4 SR (period 1964-2013). From the results, we can classify partitioned regions based on the correlation into two classes: strong and very strong. This classification can be used for early warning system in disaster management.

Paper Detail
1132
downloads
40
9999923
Variation in the Traditional Knowledge of Curcuma longa L. in North-Eastern Algeria
Abstract:

Curcuma longa L. (Zingiberaceae), commonly known as turmeric, has a long history of traditional uses for culinary purposes as a spice and a food colorant. The present study aimed to document the ethnobotanical knowledge about Curcuma longa, and to assess the variation in the herbalists’ experience in Northeastern Algeria. Data were collected using semi-structured questionnaires and direct interviews with 30 herbalists. Ethnobotanical indices, including the fidelity level (FL%), the relative frequency citation (RFC), and use value (UV) were determined by quantitative methods. Diversity in the level of knowledge was analyzed using univariate, non-parametric, and multivariate statistical methods. Three main categories of uses were recorded for C. longa: for food, for medicine, and for cosmetic purposes. As a medicine, turmeric was used for the treatment of gastrointestinal, dermatological, and hepatic diseases. Medicinal and food uses were correlated with both forms of preparation (rhizome and powder). The age group did not influence the use. Multivariate analyses showed a significant variation in traditional knowledge, associated with the use value, origin, quality, and efficacy of the drug. The findings suggested that the geographical origin of C. longa affected the use in Algeria.

Paper Detail
1576
downloads
39
10000130
Forecasting Rainfall in Thailand: A Case Study of Nakhon Ratchasima Province
Authors:
Abstract:

In this paper, we study the rainfall using a time series for weather stations in Nakhon Ratchasima province in Thailand by various statistical methods to enable us to analyse the behaviour of rainfall in the study areas. Time-series analysis is an important tool in modelling and forecasting rainfall. The ARIMA and Holt-Winter models were built on the basis of exponential smoothing. All the models proved to be adequate. Therefore it is possible to give information that can help decision makers establish strategies for the proper planning of agriculture, drainage systems and other water resource applications in Nakhon Ratchasima province. We obtained the best performance from forecasting with the ARIMA Model(1,0,1)(1,0,1)12.

Paper Detail
1723
downloads
38
10000925
Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Paper Detail
1205
downloads
37
9998858
A Follow–Up Study of Bachelor of Science Graduates in Applied Statistics from Suan Sunandha Rajabhat University during the 1999-2012 Academic Years
Abstract:

The purpose of this study is to follow – up the graduated students of Bachelor of Science in Applied Statistics from Suan Sunandha Rajabhat University (SSRU) during the 1999 – 2012 academic years and to provide the fundamental guideline for developing the current curriculum according to Thai Qualifications Framework for Higher Education (TQF: HEd). The sample was collected from 75 graduates by interview and online questionnaire. The content covered 5 subjects were Ethics and Moral, Knowledge, Cognitive Skills, Interpersonal Skill and Responsibility, Numerical Analysis as well as Communication and Information Technology Skills. Data were analyzed by using statistical methods as percentiles, means, standard deviation, t- tests, and F- tests. The findings showed that samples were mostly female had less than 26 years old. The majority of graduates had income in the range of 10,001-20,000 Baht and experience range were 2-5 years. In addition, overall opinions from receiving knowledge to apply to work were at agree; mean score was 3.97 and standard deviation was 0.40. In terms of, the hypothesis testing’s result indicate gender only had different opinion at a significance level of 0.05.

Paper Detail
874
downloads
36
3020
Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data
Authors:
Abstract:
Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.
Paper Detail
998
downloads
35
14822
Texture Feature Extraction of Infrared River Ice Images using Second-Order Spatial Statistics
Abstract:

Ice cover County has a significant impact on rivers as it affects with the ice melting capacity which results in flooding, restrict navigation, modify the ecosystem and microclimate. River ices are made up of different ice types with varying ice thickness, so surveillance of river ice plays an important role. River ice types are captured using infrared imaging camera which captures the images even during the night times. In this paper the river ice infrared texture images are analysed using first-order statistical methods and secondorder statistical methods. The second order statistical methods considered are spatial gray level dependence method, gray level run length method and gray level difference method. The performance of the feature extraction methods are evaluated by using Probabilistic Neural Network classifier and it is found that the first-order statistical method and second-order statistical method yields low accuracy. So the features extracted from the first-order statistical method and second-order statistical method are combined and it is observed that the result of these combined features (First order statistical method + gray level run length method) provides higher accuracy when compared with the features from the first-order statistical method and second-order statistical method alone.

Paper Detail
1916
downloads
34
1150
Cryogenic Freezing Process Optimization Based On Desirability Function on the Path of Steepest Ascent
Abstract:

This paper presents a comparative study of statistical methods for the multi-response surface optimization of a cryogenic freezing process. Taguchi design and analysis and steepest ascent methods based on the desirability function were conducted to ascertain the influential factors of a cryogenic freezing process and their optimal levels. The more preferable levels of the set point, exhaust fan speed, retention time and flow direction are set at -90oC, 20 Hz, 18 minutes and Counter Current, respectively. The overall desirability level is 0.7044.

Paper Detail
1030
downloads
33
5000
Breast Motion and Discomfort of Chinese Women in Three Breast Support Conditions
Abstract:
Breast motion and discomfort has been studied in Australia, Britain and the United States, while little information was known about the breast motion conditions of Chinese women. The aim of this paper was to study the breast motion and discomfort of Chinese women in no bra condition, daily bra condition and sports bra condition. Breast motion and discomfort of 8 participants was assessed during walking at 5km h-1 and running at 10km h-1. Statistical methods were used to analyze the difference and relationship between breast displacement, perceived breast motion and breast discomfort. Three indexes were developed to evaluate the functions of bras on reducing objective breast motion, subjective breast motion and breast discomfort. The result showed that breast motion of Chinese women was smaller than previous research, which may be resulted from smaller breast size in Asian women.
Paper Detail
1570
downloads
32
15141
A Novel Approach to Handle Uncertainty in Health System Variables for Hospital Admissions
Abstract:
Hospital staff and managers are under pressure and concerned for effective use and management of scarce resources. The hospital admissions require many decisions that have complex and uncertain consequences for hospital resource utilization and patient flow. It is challenging to predict risk of admissions and length of stay of a patient due to their vague nature. There is no method to capture the vague definition of admission of a patient. Also, current methods and tools used to predict patients at risk of admission fail to deal with uncertainty in unplanned admission, LOS, patients- characteristics. The main objective of this paper is to deal with uncertainty in health system variables, and handles uncertain relationship among variables. An introduction of machine learning techniques along with statistical methods like Regression methods can be a proposed solution approach to handle uncertainty in health system variables. A model that adapts fuzzy methods to handle uncertain data and uncertain relationships can be an efficient solution to capture the vague definition of admission of a patient.
Paper Detail
764
downloads
31
7271
Food Quality Labels and their Perception by Consumers in the Czech Republic
Abstract:

The paper deals with quality labels used in the food products market, especially with labels of quality, labels of origin, and labels of organic farming. The aim of the paper is to identify perception of these labels by consumers in the Czech Republic. The first part refers to the definition and specification of food quality labels that are relevant in the Czech Republic. The second part includes the discussion of marketing research results. Data were collected with personal questioning method. Empirical findings on 150 respondents are related to consumer awareness and perception of national and European food quality labels used in the Czech Republic, attitudes to purchases of labelled products, and interest in information regarding the labels. Statistical methods, in the concrete Pearson´s chi-square test of independence, coefficient of contingency, and coefficient of association are used to determinate if significant differences do exist among selected demographic categories of Czech consumers.

Paper Detail
1200
downloads
30
12173
Investigation of Genetic Epidemiology of Metabolic Compromises in ß Thalassemia Minor Mutation: Phenotypic Pleiotropy
Abstract:
Human genome is not only the evolutionary summation of all advantageous events, but also houses lesions of deleterious foot prints. A single gene mutation sometimes may express multiple consequences in numerous tissues and a linear relationship of the genotype and the phenotype may often be obscure. ß Thalassemia minor, a transfusion independent mild anaemia, coupled with environment among other factors may articulate into phenotypic pleotropy with Hypocholesterolemia, Vitamin D deficiency, Tissue hypoxia, Hyper-parathyroidism and Psychological alterations. Occurrence of Pancreatic insufficiency, resultant steatorrhoea, Vitamin-D (25-OH) deficiency (13.86 ngm/ml) with Hypocholesterolemia (85mg/dl) in a 30 years old male ß Thal-minor patient (Hemoglobin 11mg/dl with Fetal Hemoglobin 2.10%, Hb A2 4.60% and Hb Adult 84.80% and altered Hemogram) with increased Para thyroid hormone (62 pg/ml) & moderate Serum Ca+2 (9.5mg/ml) indicate towards a cascade of phenotypic pleotropy where the ß Thalassemia mutation ,be it in the 5’ cap site of the mRNA , differential splicing etc in heterozygous state is effecting several metabolic pathways. Compensatory extramedulary hematopoiesis may not coped up well with the stressful life style of the young individual and increased erythropoietic stress with high demand for cholesterol for RBC membrane synthesis may have resulted in Hypocholesterolemia.Oxidative stress and tissue hypoxia may have caused the pancreatic insufficiency, leading to Vitamin D deficiency. This may in turn have caused the secondary hyperparathyroidism to sustain serum Calcium level. Irritability and stress intolerance of the patient was a cumulative effect of the vicious cycle of metabolic compromises. From these findings we propose that the metabolic deficiencies in the ß Thalassemia mutations may be considered as the phenotypic display of the pleotropy to explain the genetic epidemiology. According to the recommendations from the NIH Workshop on Gene-Environment Interplay in Common Complex Diseases: Forging an Integrative Model, study design of observations should be informed by gene-environment hypotheses and results of a study (genetic diseases) should be published to inform future hypotheses. Variety of approaches is needed to capture data on all possible aspects, each of which is likely to contribute to the etiology of disease. Speakers also agreed that there is a need for development of new statistical methods and measurement tools to appraise information that may be missed out by conventional method where large sample size is needed to segregate considerable effect. A meta analytic cohort study in future may bring about significant insight on to the title comment.
Paper Detail
5699
downloads
29
10367
Fault Detection of Pipeline in Water Distribution Network System
Abstract:
Water pipe network is installed underground and once equipped, it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using MATLAB. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.
Paper Detail
1301
downloads
28
1837
Study of Temperature Changes in Fars Province
Abstract:
Climate change is a phenomenon has been based on the available evidence from a very long time ago and now its existence is very probable. The speed and nature of climate parameters changes at the middle of twentieth century has been different and its quickness more than the before and its trend changed to some extent comparing to the past. Climate change issue now regarded as not only one of the most common scientific topic but also a social political one, is not a new issue. Climate change is a complicated atmospheric oceanic phenomenon on a global scale and long-term. Precipitation pattern change, fast decrease of snowcovered resources and its rapid melting, increased evaporation, the occurrence of destroying floods, water shortage crisis, severe reduction at the rate of harvesting agricultural products and, so on are all the significant of climate change. To cope with this phenomenon, its consequences and events in which public instruction is the most important but it may be climate that no significant cant and effective action has been done so far. The present article is included a part of one surrey about climate change in Fars. The study area having annually mean temperature 14 and precipitation 320 mm .23 stations inside the basin with a common 37 year statistical period have been applied to the meteorology data (1974-2010). Man-kendal and change factor methods are two statistical methods, applying them, the trend of changes and the annual mean average temperature and the annual minimum mean temperature were studied by using them. Based on time series for each parameter, the annual mean average temperature and the mean of annual maximum temperature have a rising trend so that this trend is clearer to the mean of annual maximum temperature.
Paper Detail
1211
downloads
27
5797
The Analysis of the Impact of Urbanization on Urban Meteorology from Urban Growth Management Perspective
Abstract:
The amount of urban artificial heat which affects the urban temperature rise in urban meteorology was investigated in order to clarify the relationships between urbanization and urban meteorology in this study. The results of calculation to identify how urban temperate was increased through the establishment of a model for measuring the amount of urban artificial heat and theoretical testing revealed that the amount of urban artificial heat increased urban temperature by plus or minus 0.23 ˚ C in 2007 compared with 1996, statistical methods (correlation and regression analysis) to clarify the relationships between urbanization and urban weather were as follows. New design techniques and urban growth management are necessary from urban growth management point of view suggested from this research at city design phase to decrease urban temperature rise and urban torrential rain which can produce urban disaster in terms of urban meteorology by urbanization.
Paper Detail
836
downloads
26
11592
A Comparison of Different Soft Computing Models for Credit Scoring
Abstract:
It has become crucial over the years for nations to improve their credit scoring methods and techniques in light of the increasing volatility of the global economy. Statistical methods or tools have been the favoured means for this; however artificial intelligence or soft computing based techniques are becoming increasingly preferred due to their proficient and precise nature and relative simplicity. This work presents a comparison between Support Vector Machines and Artificial Neural Networks two popular soft computing models when applied to credit scoring. Amidst the different criteria-s that can be used for comparisons; accuracy, computational complexity and processing times are the selected criteria used to evaluate both models. Furthermore the German credit scoring dataset which is a real world dataset is used to train and test both developed models. Experimental results obtained from our study suggest that although both soft computing models could be used with a high degree of accuracy, Artificial Neural Networks deliver better results than Support Vector Machines.
Paper Detail
1383
downloads
25
4071
Strategies of Education and Training Practice of Small and Medium Sized Enterprises
Abstract:
The role of knowledge is a determinative factor in the life of economy and society. To determine knowledge is not an easy task yet the real task is to determine the right knowledge. From this view knowledge is a sum of experience, ideas and cognitions which can help companies to remain in markets and to realize a maximum profit. At the same time changes of circumstances project in advance that contents and demands of the right knowledge are changing. In this paper we will analyse a special segment on the basis of an empirical survey. We investigated the behaviour and strategies of small and medium sized enterprises (SMEs) in the area of knowledge-handling. This survey was realized by questionnaires and wide range statistical methods were used during processing. As a result we will show how these companies are prepared to operate in a knowledge-based economy and in which areas they have prominent deficiencies.
Paper Detail
898
downloads
24
10544
A Study on Early Prediction of Fault Proneness in Software Modules using Genetic Algorithm
Abstract:
Fault-proneness of a software module is the probability that the module contains faults. To predict faultproneness of modules different techniques have been proposed which includes statistical methods, machine learning techniques, neural network techniques and clustering techniques. The aim of proposed study is to explore whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules using Genetic Algorithm technique. This approach has been tested with real time defect C Programming language datasets of NASA software projects. The results show that the fusion of requirement and code metric is the best prediction model for detecting the faults as compared with commonly used code based model.
Paper Detail
1138
downloads
23
13351
Forecasting e-Learning Efficiency by Using Artificial Neural Networks and a Balanced Score Card
Abstract:
Forecasting the values of the indicators, which characterize the effectiveness of performance of organizations is of great importance for their successful development. Such forecasting is necessary in order to assess the current state and to foresee future developments, so that measures to improve the organization-s activity could be undertaken in time. The article presents an overview of the applied mathematical and statistical methods for developing forecasts. Special attention is paid to artificial neural networks as a forecasting tool. Their strengths and weaknesses are analyzed and a synopsis is made of the application of artificial neural networks in the field of forecasting of the values of different education efficiency indicators. A method of evaluation of the activity of universities using the Balanced Scorecard is proposed and Key Performance Indicators for assessment of e-learning are selected. Resulting indicators for the evaluation of efficiency of the activity are proposed. An artificial neural network is constructed and applied in the forecasting of the values of indicators for e-learning efficiency on the basis of the KPI values.
Paper Detail
924
downloads