5

10008940

Performance of the Strong Stability Method in the Univariate Classical Risk Model

In this paper, we study the performance of the strong
stability method of the univariate classical risk model. We interest to
the stability bounds established using two approaches. The first based
on the strong stability method developed for a general Markov chains.
The second approach based on the regenerative processes theory . By
adopting an algorithmic procedure, we study the performance of the
stability method in the case of exponential distribution claim amounts.
After presenting numerically and graphically the stability bounds, an
interpretation and comparison of the results have been done.

4

10006198

A Hyperexponential Approximation to Finite-Time and Infinite-Time Ruin Probabilities of Compound Poisson Processes

This article considers the problem of evaluating
infinite-time (or finite-time) ruin probability under a given compound
Poisson surplus process by approximating the claim size distribution
by a finite mixture exponential, say Hyperexponential, distribution. It
restates the infinite-time (or finite-time) ruin probability as a solvable
ordinary differential equation (or a partial differential equation).
Application of our findings has been given through a simulation study.

3

5556

Ruin Probabilities with Dependent Rates of Interest and Autoregressive Moving Average Structures

This paper studies ruin probabilities in two discrete-time
risk models with premiums, claims and rates of interest modelled by
three autoregressive moving average processes. Generalized Lundberg
inequalities for ruin probabilities are derived by using recursive
technique. A numerical example is given to illustrate the applications
of these probability inequalities.

2

8414

Ruin Probability for a Markovian Risk Model with Two-type Claims

In this paper, a Markovian risk model with two-type claims is considered. In such a risk model, the occurrences of the two type claims are described by two point processes {Ni(t), t ¸ 0}, i = 1, 2, where {Ni(t), t ¸ 0} is the number of jumps during the interval (0, t] for the Markov jump process {Xi(t), t ¸ 0} . The ruin probability ª(u) of a company facing such a risk model is mainly discussed. An integral equation satisfied by the ruin probability ª(u) is obtained and the bounds for the convergence rate of the ruin probability ª(u) are given by using key-renewal theorem.

1

12963

The Study of the Discrete Risk Model with Random Income

In this paper, we extend the compound binomial model to the case where the premium income process, based on a binomial process, is no longer a linear function. First, a mathematically recursive formula is derived for non ruin probability, and then, we examine the expected discounted penalty function, satisfy a defect renewal equation. Third, the asymptotic estimate for the expected discounted penalty function is then given. Finally, we give two examples of ruin quantities to illustrate applications of the recursive formula and the asymptotic estimate for penalty function.