International Science Index

3
10007406
Design of Parity-Preserving Reversible Logic Signed Array Multipliers
Abstract:
Reversible logic as a new favorable design domain can be used for various fields especially creating quantum computers because of its speed and intangible power consumption. However, its susceptibility to a variety of environmental effects may lead to yield the incorrect results. In this paper, because of the importance of multiplication operation in various computing systems, some novel reversible logic array multipliers are proposed with error detection capability by incorporating the parity-preserving gates. The new designs are presented for two main parts of array multipliers, partial product generation and multi-operand addition, by exploiting the new arrangements of existing gates, which results in two signed parity-preserving array multipliers. The experimental results reveal that the best proposed 4×4 multiplier in this paper reaches 12%, 24%, and 26% enhancements in the number of constant inputs, number of required gates, and quantum cost, respectively, compared to previous design. Moreover, the best proposed design is generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.
Paper Detail
66
downloads
2
10000330
Design and Testing of Nanotechnology Based Sequential Circuits Using MX-CQCA Logic in VHDL
Abstract:

This paper impart the design and testing of Nanotechnology based sequential circuits using multiplexer conservative QCA (MX-CQCA) logic gates, which is easily testable using only two vectors. This method has great prospective in the design of sequential circuits based on reversible conservative logic gates and also smashes the sequential circuits implemented in traditional gates in terms of testability. Reversible circuits are similar to usual logic circuits except that they are built from reversible gates. Designs of multiplexer conservative QCA logic based two vectors testable double edge triggered (DET) sequential circuits in VHDL language are also accessible here; it will also diminish intricacy in testing side. Also other types of sequential circuits such as D, SR, JK latches are designed using this MX-CQCA logic gate. The objective behind the proposed design methodologies is to amalgamate arithmetic and logic functional units optimizing key metrics such as garbage outputs, delay, area and power. The projected MX-CQCA gate outshines other reversible gates in terms of the intricacy, delay.

Paper Detail
1553
downloads
1
10714
A Reversible CMOS AD / DA Converter Implemented with Pseudo Floating-Gate
Abstract:
Reversible logic is becoming more and more prominent as the technology sets higher demands on heat, power, scaling and stability. Reversible gates are able at any time to "undo" the current step or function. Multiple-valued logic has the advantage of transporting and evaluating higher bits each clock cycle than binary. Moreover, we demonstrate in this paper, combining these disciplines we can construct powerful multiple-valued reversible logic structures. In this paper a reversible block implemented by pseudo floatinggate can perform AD-function and a DA-function as its reverse application.
Paper Detail
945
downloads