International Science Index

25
10007189
Examining the Performance of Three Multiobjective Evolutionary Algorithms Based on Benchmarking Problems
Abstract:

The objective of this study is to examine the performance of three well-known multiobjective evolutionary algorithms for solving optimization problems. The first algorithm is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the second one is the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and the third one is the Multiobjective Evolutionary Algorithms based on decomposition (MOEA/D). The examined multiobjective algorithms are analyzed and tested on the ZDT set of test functions by three performance metrics. The results indicate that the NSGA-II performs better than the other two algorithms based on three performance metrics.

Paper Detail
73
downloads
24
10007450
Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite
Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Paper Detail
67
downloads
23
10006010
An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks
Abstract:

This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.

Paper Detail
228
downloads
22
10007541
Simulation of Utility Accrual Scheduling and Recovery Algorithm in Multiprocessor Environment
Abstract:

This paper presents the development of an event based Discrete Event Simulation (DES) for a recovery algorithm known Backward Recovery Global Preemptive Utility Accrual Scheduling (BR_GPUAS). This algorithm implements the Backward Recovery (BR) mechanism as a fault recovery solution under the existing Time/Utility Function/ Utility Accrual (TUF/UA) scheduling domain for multiprocessor environment. The BR mechanism attempts to take the faulty tasks back to its initial safe state and then proceeds to re-execute the affected section of the faulty tasks to enable recovery. Considering that faults may occur in the components of any system; a fault tolerance system that can nullify the erroneous effect is necessary to be developed. Current TUF/UA scheduling algorithm uses the abortion recovery mechanism and it simply aborts the erroneous task as their fault recovery solution. None of the existing algorithm in TUF/UA scheduling domain in multiprocessor scheduling environment have considered the transient fault and implement the BR mechanism as a fault recovery mechanism to nullify the erroneous effect and solve the recovery problem in this domain. The developed BR_GPUAS simulator has derived the set of parameter, events and performance metrics according to a detailed analysis of the base model. Simulation results revealed that BR_GPUAS algorithm can saved almost 20-30% of the accumulated utilities making it reliable and efficient for the real-time application in the multiprocessor scheduling environment.

Paper Detail
19
downloads
21
10004514
Cooperative Cross Layer Topology for Concurrent Transmission Scheduling Scheme in Broadband Wireless Networks
Abstract:

In this paper, we consider CCL-N (Cooperative Cross Layer Network) topology based on the cross layer (both centralized and distributed) environment to form network communities. Various performance metrics related to the IEEE 802.16 networks are discussed to design CCL-N Topology. In CCL-N topology, nodes are classified as master nodes (Master Base Station [MBS]) and serving nodes (Relay Station [RS]). Nodes communities are organized based on the networking terminologies. Based on CCL-N Topology, various simulation analyses for both transparent and non-transparent relays are tabulated and throughput efficiency is calculated. Weighted load balancing problem plays a challenging role in IEEE 802.16 network. CoTS (Concurrent Transmission Scheduling) Scheme is formulated in terms of three aspects – transmission mechanism based on identical communities, different communities and identical node communities. CoTS scheme helps in identifying the weighted load balancing problem. Based on the analytical results, modularity value is inversely proportional to that of the error value. The modularity value plays a key role in solving the CoTS problem based on hop count. The transmission mechanism for identical node community has no impact since modularity value is same for all the network groups. In this paper three aspects of communities based on the modularity value which helps in solving the problem of weighted load balancing and CoTS are discussed.

Paper Detail
650
downloads
20
10004012
An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data
Abstract:
The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.
Paper Detail
722
downloads
19
10002071
Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus
Abstract:
Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. Medical dataset is a vital ingredient used in predicting patient’s health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. WEKA software was used for the implementation of the algorithms. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. From the results obtained, DTA performed better than ANN. The Root Mean Squared Error (RMSE) of MLP is 0.3913 that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.
Paper Detail
1608
downloads
18
10005480
An Analysis of Compression Methods and Implementation of Medical Images in Wireless Network
Abstract:
The motivation of image compression technique is to reduce the irrelevance and redundancy of the image data in order to store or pass data in an efficient way from one place to another place. There are several types of compression methods available. Without the help of compression technique, the file size is knowingly larger, usually several megabytes, but by doing the compression technique, it is possible to reduce file size up to 10% as of the original without noticeable loss in quality. Image compression can be lossless or lossy. The compression technique can be applied to images, audio, video and text data. This research work mainly concentrates on methods of encoding, DCT, compression methods, security, etc. Different methodologies and network simulations have been analyzed here. Various methods of compression methodologies and its performance metrics has been investigated and presented in a table manner.
Paper Detail
215
downloads
17
10001735
Comparison of Number of Waves Surfed and Duration Using Global Positioning System and Inertial Sensors
Abstract:

Surf is an increasingly popular sport and its performance evaluation is often qualitative. This work aims at using a smartphone to collect and analyze the GPS and inertial sensors data in order to obtain quantitative metrics of the surfing performance. Two approaches are compared for detection of wave rides, computing the number of waves rode in a surfing session, the starting time of each wave and its duration. The first approach is based on computing the velocity from the Global Positioning System (GPS) signal and finding the velocity thresholds that allow identifying the start and end of each wave ride. The second approach adds information from the Inertial Measurement Unit (IMU) of the smartphone, to the velocity thresholds obtained from the GPS unit, to determine the start and end of each wave ride. The two methods were evaluated using GPS and IMU data from two surfing sessions and validated with similar metrics extracted from video data collected from the beach. The second method, combining GPS and IMU data, was found to be more accurate in determining the number of waves, start time and duration. This paper shows that it is feasible to use smartphones for quantification of performance metrics during surfing. In particular, detection of the waves rode and their duration can be accurately determined using the smartphone GPS and IMU. 

Paper Detail
724
downloads
16
10001090
Investigation on Novel Based Naturally-Inspired Swarm Intelligence Algorithms for Optimization Problems in Mobile Ad Hoc Networks
Abstract:

Nature is the immense gifted source for solving complex problems. It always helps to find the optimal solution to solve the problem. Mobile Ad Hoc NETwork (MANET) is a wide research area of networks which has set of independent nodes. The characteristics involved in MANET’s are Dynamic, does not depend on any fixed infrastructure or centralized networks, High mobility. The Bio-Inspired algorithms are mimics the nature for solving optimization problems opening a new era in MANET. The typical Swarm Intelligence (SI) algorithms are Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), Modified Termite Algorithm, Bat Algorithm (BA), Wolf Search Algorithm (WSA) and so on. This work mainly concentrated on nature of MANET and behavior of nodes. Also it analyses various performance metrics such as throughput, QoS and End-to-End delay etc.

Paper Detail
1705
downloads
15
9999603
Automatic Tuning for a Systemic Model of Banking Originated Losses (SYMBOL) Tool on Multicore
Abstract:

Nowadays, the mathematical/statistical applications are developed with more complexity and accuracy. However, these precisions and complexities have brought as result that applications need more computational power in order to be executed faster. In this sense, the multicore environments are playing an important role to improve and to optimize the execution time of these applications. These environments allow us the inclusion of more parallelism inside the node. However, to take advantage of this parallelism is not an easy task, because we have to deal with some problems such as: cores communications, data locality, memory sizes (cache and RAM), synchronizations, data dependencies on the model, etc. These issues are becoming more important when we wish to improve the application’s performance and scalability. Hence, this paper describes an optimization method developed for Systemic Model of Banking Originated Losses (SYMBOL) tool developed by the European Commission, which is based on analyzing the application's weakness in order to exploit the advantages of the multicore. All these improvements are done in an automatic and transparent manner with the aim of improving the performance metrics of our tool. Finally, experimental evaluations show the effectiveness of our new optimized version, in which we have achieved a considerable improvement on the execution time. The time has been reduced around 96% for the best case tested, between the original serial version and the automatic parallel version.

Paper Detail
1006
downloads
14
9997557
An Expert System Designed to Be Used with MOEAs for Efficient Portfolio Selection
Abstract:

This study presents an Expert System specially designed to be used with Multiobjective Evolutionary Algorithms (MOEAs) for the solution of the portfolio selection problem. The validation of the proposed hybrid System is done by using data sets from Hang Seng 31 in Hong Kong, DAX 100 in Germany and FTSE 100 in UK. The performance of the proposed system is assessed in comparison with the Non-dominated Sorting Genetic Algorithm II (NSGAII). The evaluation of the performance is based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it. The results show that the proposed hybrid system is efficient for the solution of this kind of problems.

Paper Detail
1052
downloads
13
9997679
Per Flow Packet Scheduling Scheme to Improve the End-to-End Fairness in Mobile Ad Hoc Wireless Network
Abstract:

Various fairness models and criteria proposed by academia and industries for wired networks can be applied for ad hoc wireless network. The end-to-end fairness in an ad hoc wireless network is a challenging task compared to wired networks, which has not been addressed effectively. Most of the traffic in an ad hoc network are transport layer flows and thus the fairness of transport layer flows has attracted the interest of the researchers. The factors such as MAC protocol, routing protocol, the length of a route, buffer size, active queue management algorithm and the congestion control algorithms affects the fairness of transport layer flows. In this paper, we have considered the rate of data transmission, the queue management and packet scheduling technique. The ad hoc network is dynamic in nature due to various parameters such as transmission of control packets, multihop nature of forwarding packets, changes in source and destination nodes, changes in the routing path influences determining throughput and fairness among the concurrent flows. In addition, the effect of interaction between the protocol in the data link and transport layers has also plays a role in determining the rate of the data transmission. We maintain queue for each flow and the delay information of each flow is maintained accordingly. The pre-processing of flow is done up to the network layer only. The source and destination address information is used for separating the flow and the transport layer information is not used. This minimizes the delay in the network. Each flow is attached to a timer and is updated dynamically. Finite State Machine (FSM) is proposed for queue and transmission control mechanism. The performance of the proposed approach is evaluated in ns-2 simulation environment. The throughput and fairness based on mobility for different flows used as performance metrics. We have compared the performance of the proposed approach with ATP and the transport layer information is used. This minimizes the delay in the network. Each flow is attached to a timer and is updated dynamically. Finite State Machine (FSM) is proposed for queue and transmission control mechanism. The performance of the proposed approach is evaluated in ns-2 simulation environment. The throughput and fairness based on not mobility for different flows used as performance metrics. We have compared the performance of the proposed approach with ATP and MC-MLAS and the performance of the proposed approach is encouraging.

Paper Detail
1316
downloads
12
16066
A Testbed for the Experiments Performed in Missing Value Treatments
Abstract:

The occurrence of missing values in database is a serious problem for Data Mining tasks, responsible for degrading data quality and accuracy of analyses. In this context, the area has shown a lack of standardization for experiments to treat missing values, introducing difficulties to the evaluation process among different researches due to the absence in the use of common parameters. This paper proposes a testbed intended to facilitate the experiments implementation and provide unbiased parameters using available datasets and suited performance metrics in order to optimize the evaluation and comparison between the state of art missing values treatments.

Paper Detail
925
downloads
11
7795
Energy Efficient Cooperative Caching in WSN
Abstract:
Wireless sensor networks (WSNs) consist of number of tiny, low cost and low power sensor nodes to monitor some physical phenomenon. The major limitation in these networks is the use of non-rechargeable battery having limited power supply. The main cause of energy consumption in such networks is communication subsystem. This paper presents an energy efficient Cluster Cooperative Caching at Sensor (C3S) based upon grid type clustering. Sensor nodes belonging to the same cluster/grid form a cooperative cache system for the node since the cost for communication with them is low both in terms of energy consumption and message exchanges. The proposed scheme uses cache admission control and utility based data replacement policy to ensure that more useful data is retained in the local cache of a node. Simulation results demonstrate that C3S scheme performs better in various performance metrics than NICoCa which is existing cooperative caching protocol for WSNs.
Paper Detail
1581
downloads
10
14300
Active Intra-ONU Scheduling with Cooperative Prediction Mechanism in EPONs
Abstract:
Dynamic bandwidth allocation in EPONs can be generally separated into inter-ONU scheduling and intra-ONU scheduling. In our previous work, the active intra-ONU scheduling (AS) utilizes multiple queue reports (QRs) in each report message to cooperate with the inter-ONU scheduling and makes the granted bandwidth fully utilized without leaving unused slot remainder (USR). This scheme successfully solves the USR problem originating from the inseparability of Ethernet frame. However, without proper setting of threshold value in AS, the number of QRs constrained by the IEEE 802.3ah standard is not enough, especially in the unbalanced traffic environment. This limitation may be solved by enlarging the threshold value. The large threshold implies the large gap between the adjacent QRs, thus resulting in the large difference between the best granted bandwidth and the real granted bandwidth. In this paper, we integrate AS with a cooperative prediction mechanism and distribute multiple QRs to reduce the penalty brought by the prediction error. Furthermore, to improve the QoS and save the usage of queue reports, the highest priority (EF) traffic which comes during the waiting time is granted automatically by OLT and is not considered in the requested bandwidth of ONU. The simulation results show that the proposed scheme has better performance metrics in terms of bandwidth utilization and average delay for different classes of packets.
Paper Detail
979
downloads
9
14823
Performance Analysis of Multiuser Diversity in Multiuser Two-Hop Decode-and-Forward Cooperative Multi-Relay Wireless Networks
Abstract:

Cooperative diversity (CD) has been adopted in many communication systems because it helps in improving performance of the wireless communication systems with the help of the relays that emulate the multiple antenna terminals. This work aims to provide the derivation of the performance analysis expressions of the multiuser diversity (MUD) in the two-hop cooperative multi-relay wireless networks (TCMRNs). Considering the work analysis, we provide analytically the derivation of a closed form expression of the two most commonly used performance metrics namely, the outage probability and the symbol error probability (SEP) for the fixed decode-and-forward (FDF) protocol with MUD.

Paper Detail
921
downloads
8
12872
Next Generation IP Address Transition Mechanism for Web Application System
Abstract:

Internet Protocol version 4 (IPv4) address is decreasing and a rapid transition method to the next generation IP address (IPv6) should be established. This study aims to evaluate and select the best performance of the IPv6 address network transitionmechanisms, such as IPv4/IPv6 dual stack, transport Relay Translation (TRT) and Reverse Proxy with additional features. It is also aim to prove that faster access can be done while ensuring optimal usage of available resources used during the test and actual implementation. This study used two test methods such asInternet Control Message Protocol (ICMP)ping and ApacheBenchmark (AB) methodsto evaluate the performance.Performance metrics for this study include aspects ofaverageaccessin one second,time takenfor singleaccess,thedata transfer speed and the costof additional requirements.Reverse Proxy with Caching featureis the most efficientmechanism because of it simpler configurationandthe best performerfrom the test conducted.

Paper Detail
1216
downloads
7
15552
Evaluation of Energy-Aware QoS Routing Protocol for Ad Hoc Wireless Sensor Networks
Abstract:

Many advanced Routing protocols for wireless sensor networks have been implemented for the effective routing of data. Energy awareness is an essential design issue and almost all of these routing protocols are considered as energy efficient and its ultimate objective is to maximize the whole network lifetime. However, the introductions of video and imaging sensors have posed additional challenges. Transmission of video and imaging data requires both energy and QoS aware routing in order to ensure efficient usage of the sensors and effective access to the gathered measurements. In this paper, the performance of the energy-aware QoS routing Protocol are analyzed in different performance metrics like average lifetime of a node, average delay per packet and network throughput. The parameters considered in this study are end-to-end delay, real time data generation/capture rates, packet drop probability and buffer size. The network throughput for realtime and non-realtime data was also has been analyzed. The simulation has been done in NS2 simulation environment and the simulation results were analyzed with respect to different metrics.

Paper Detail
1222
downloads
6
8576
A Systematic Method for Performance Analysis of SOA Applications
Abstract:

The successful implementation of Service-Oriented Architecture (SOA) is not confined to Information Technology systems and required changes of the whole enterprise. In order to adapt IT and business, the enterprise requires adequate and measurable methods. The adoption of SOA creates new problem with regard to measuring and analysis the performance. In fact the enterprise should investigate to what extent the development of services will increase the value of business. It is required for every business to measure the extent of SOA adaptation with the goals of enterprise. Moreover, precise performance metrics and their combination with the advanced evaluation methodologies as a solution should be defined. The aim of this paper is to present a systematic methodology for designing a measurement system at the technical and business levels, so that: (1) it will determine measurement metrics precisely (2) the results will be analysed by mapping identified metrics to the measurement tools.

Paper Detail
1110
downloads
5
14549
MinRoot and CMesh: Interconnection Architectures for Network-on-Chip Systems
Abstract:

The success of an electronic system in a System-on- Chip is highly dependent on the efficiency of its interconnection network, which is constructed from routers and channels (the routers move data across the channels between nodes). Since neither classical bus based nor point to point architectures can provide scalable solutions and satisfy the tight power and performance requirements of future applications, the Network-on-Chip (NoC) approach has recently been proposed as a promising solution. Indeed, in contrast to the traditional solutions, the NoC approach can provide large bandwidth with moderate area overhead. The selected topology of the components interconnects plays prime rule in the performance of NoC architecture as well as routing and switching techniques that can be used. In this paper, we present two generic NoC architectures that can be customized to the specific communication needs of an application in order to reduce the area with minimal degradation of the latency of the system. An experimental study is performed to compare these structures with basic NoC topologies represented by 2D mesh, Butterfly-Fat Tree (BFT) and SPIN. It is shown that Cluster mesh (CMesh) and MinRoot schemes achieves significant improvements in network latency and energy consumption with only negligible area overhead and complexity over existing architectures. In fact, in the case of basic NoC topologies, CMesh and MinRoot schemes provides substantial savings in area as well, because they requires fewer routers. The simulation results show that CMesh and MinRoot networks outperforms MESH, BFT and SPIN in main performance metrics.

Paper Detail
1273
downloads
4
468
Performance Evaluation of an Online Text-Based Strategy Game
Abstract:
Text-based game is supposed to be a low resource consumption application that delivers good performances when compared to graphical-intensive type of games. But, nowadays, some of the online text-based games are not offering performances that are acceptable to the users. Therefore, an online text-based game called Star_Quest has been developed in order to analyze its behavior under different performance measurements. Performance metrics such as throughput, scalability, response time and page loading time are captured to yield the performance of the game. The techniques in performing the load testing are also disclosed to exhibit the viability of our work. The comparative assessment between the results obtained and the accepted level of performances are conducted as to determine the performance level of the game. The study reveals that the developed game managed to meet all the performance objectives set forth.
Paper Detail
979
downloads
3
7474
Demand and Supply Chain Simulation in Telecommunication Industry by Multi-Rate Expert Systems
Abstract:
In modern telecommunications industry, demand & supply chain management (DSCM) needs reliable design and versatile tools to control the material flow. The objective for efficient DSCM is reducing inventory, lead times and related costs in order to assure reliable and on-time deliveries from manufacturing units towards customers. In this paper the multi-rate expert system based methodology for developing simulation tools that would enable optimal DSCM for multi region, high volume and high complexity manufacturing environment was proposed.
Paper Detail
1028
downloads
2
9737
Estimation of Buffer Size of Internet Gateway Server via G/M/1 Queuing Model
Abstract:
How to efficiently assign system resource to route the Client demand by Gateway servers is a tricky predicament. In this paper, we tender an enhanced proposal for autonomous recital of Gateway servers under highly vibrant traffic loads. We devise a methodology to calculate Queue Length and Waiting Time utilizing Gateway Server information to reduce response time variance in presence of bursty traffic. The most widespread contemplation is performance, because Gateway Servers must offer cost-effective and high-availability services in the elongated period, thus they have to be scaled to meet the expected load. Performance measurements can be the base for performance modeling and prediction. With the help of performance models, the performance metrics (like buffer estimation, waiting time) can be determined at the development process. This paper describes the possible queue models those can be applied in the estimation of queue length to estimate the final value of the memory size. Both simulation and experimental studies using synthesized workloads and analysis of real-world Gateway Servers demonstrate the effectiveness of the proposed system.
Paper Detail
1001
downloads
1
11377
IKEv1 and IKEv2: A Quantitative Analyses
Abstract:

Key management is a vital component in any modern security protocol. Due to scalability and practical implementation considerations automatic key management seems a natural choice in significantly large virtual private networks (VPNs). In this context IETF Internet Key Exchange (IKE) is the most promising protocol under permanent review. We have made a humble effort to pinpoint IKEv2 net gain over IKEv1 due to recent modifications in its original structure, along with a brief overview of salient improvements between the two versions. We have used US National Institute of Technology NIIST VPN simulator to get some comparisons of important performance metrics.

Paper Detail
3418
downloads