9

10007759

A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method

Two-phase and multi-phase flows are common flow types in fluid mechanics engineering. Among the basic and applied problems of these flow types, two-phase parallel flow is the one that two immiscible fluids flow in the vicinity of each other. In this type of flow, fluid properties (e.g. density, viscosity, and temperature) are different at the two sides of the interface of the two fluids. The most challenging part of the numerical simulation of two-phase flow is to determine the location of interface accurately. In the present work, a coupled interface tracking algorithm is developed based on Arbitrary Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-based, coupled solver. To validate this algorithm, an analytical solution for fully developed two-phase flow in presence of gravity is derived, and then, the results of the numerical simulation of this flow are compared with analytical solution at various flow conditions. The results of the simulations show good accuracy of the algorithm despite using a nearly coarse and uniform grid. Temporal variations of interface profile toward the steady-state solution show that a greater difference between fluids properties (especially dynamic viscosity) will result in larger traveling waves. Gravity effect studies also show that favorable gravity will result in a reduction of heavier fluid thickness and adverse gravity leads to increasing it with respect to the zero gravity condition. However, the magnitude of variation in favorable gravity is much more than adverse gravity.

8

10005484

A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines

This paper presents a nonlinear differential model,
for a three-bladed horizontal axis wind turbine (HAWT) suited
for control applications. It is based on a 8-dofs, lumped
parameters structural dynamics coupled with a quasi-steady sectional
aerodynamics. In particular, using the Euler-Lagrange Equation
(Energetic Variation approach), the authors derive, and successively
validate, such model. For the derivation of the aerodynamic model,
the Greenbergs theory, an extension of the theory proposed by
Theodorsen to the case of thin airfoils undergoing pulsating flows,
is used. Specifically, in this work, the authors restricted that theory
under the hypothesis of low perturbation reduced frequency k,
which causes the lift deficiency function C(k) to be real and equal
to 1. Furthermore, the expressions of the aerodynamic loads are
obtained using the quasi-steady strip theory (Hodges and Ormiston),
as a function of the chordwise and normal components of relative
velocity between flow and airfoil Ut, Up, their derivatives, and
section angular velocity ε˙. For the validation of the proposed model,
the authors carried out open and closed-loop simulations of a 5
MW HAWT, characterized by radius R =61.5 m and by mean chord
c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec.
The first analysis performed is the steady state solution, where
a uniform wind Vw = 11.4 m/s is considered and a collective
pitch angle θ = 0.88◦ is imposed. During this step, the authors
noticed that the proposed model is intrinsically periodic due to
the effect of the wind and of the gravitational force. In order
to reject this periodic trend in the model dynamics, the authors
propose a collective repetitive control algorithm coupled with a PD
controller. In particular, when the reference command to be tracked
and/or the disturbance to be rejected are periodic signals with a
fixed period, the repetitive control strategies can be applied due to
their high precision, simple implementation and little performance
dependency on system parameters. The functional scheme of a
repetitive controller is quite simple and, given a periodic reference
command, is composed of a control block Crc(s) usually added
to an existing feedback control system. The control block contains
and a free time-delay system eτs in a positive feedback loop, and a
low-pass filter q(s). It should be noticed that, while the time delay
term reduces the stability margin, on the other hand the low pass
filter is added to ensure stability. It is worth noting that, in this
work, the authors propose a phase shifting for the controller and
the delay system has been modified as e^(−(T−γk)), where T is the
period of the signal and γk is a phase shifting of k samples of the
same periodic signal. It should be noticed that, the phase shifting
technique is particularly useful in non-minimum phase systems, such
as flexible structures. In fact, using the phase shifting, the iterative
algorithm could reach the convergence also at high frequencies.
Notice that, in our case study, the shifting of k samples depends
both on the rotor angular velocity Ω and on the rotor azimuth
angle Ψ: we refer to this controller as a spatial repetitive controller.
The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades.
The performance of the spatial repetitive controller is compared
with an industrial PI controller. In particular, starting from wind
speed velocity Vw = 11.4 m/s the controller is asked to maintain the
nominal angular velocity Ωn = 1.266rad/s after an instantaneous
increase of wind speed (Vw = 15 m/s). Then, a purely periodic
external disturbance is introduced in order to stress the capabilities
of the repetitive controller. The results of the simulations show that,
contrary to a simple PI controller, the spatial repetitive-PD controller
has the capability to reject both external disturbances and periodic
trend in the model dynamics. Finally, the nominal value of the
angular velocity is reached, in accordance with results obtained with
commercial software for a turbine of the same type.

7

10004489

Numerical Study on the Hazards of Gravitational Forces on Cerebral Aneurysms

Aerobatic and military pilots are subjected to high gravitational forces that could cause blackout, physical injuries or death. A CFD simulation using fluid-solid interactions scheme has been conducted to investigate the gravitational effects and hazards inside cerebral aneurysms. Medical data have been used to derive the size and geometry of a simple aneurysm on a T-shaped bifurcation. The results show that gravitational force has no effect on maximum Wall Shear Stress (WSS); hence, it will not cause aneurysm initiation/formation. However, gravitational force cause causes hypertension which could contribute to aneurysm rupture.

6

10003760

A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads

This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance on the issue is limited, so are the availability of laboratory and field test data. The interpretation of these results in sand, such as the relation between loading and displacement, relies mainly on empirical correlations to pile properties. Regarding numerical models, most data from Finite Element Method (FEM) can be found. They are not comprehensive, and most of the FEM results are sensitive to input parameters. The micro scale behaviour could change the mechanism of the soil-structure interaction. A DEM model was used in this paper to study the cyclic lateral loads behaviour. A non-dimensional framework is presented and applied to interpret the simulation results. The DEM data compares well with various set of published experimental centrifuge model test data in terms of lateral deflection. The accumulated permanent pile lateral displacements induced by the cyclic lateral loads were found to be dependent on the characteristics of the applied cyclic load, such as the extent of the loading magnitudes and directions.

5

17217

Time Map

The interaction of mass will determine the curvature of space-time, may determine that events proceed at different rates of time at each point in space, so each has a corresponding gravitational potential time. So we can find different values of gravity (g), corresponding to different times (t), thus making a "map of time in space." The space-time is curved by present mass, causing a force of attraction towards the body, but if you invest the curvature of space-time, we find that this field is repulsive: Obtaining negative gravitational forces and positive gravitational forces respectively.

4

9289

Visual Study on Flow Patterns and Heat Transfer during Convective Boiling Inside Horizontal Smooth and Microfin Tubes

Evaporator is an important and widely used heat
exchanger in air conditioning and refrigeration industries. Different
methods have been used by investigators to increase the heat transfer
rates in evaporators. One of the passive techniques to enhance heat
transfer coefficient is the application of microfin tubes. The
mechanism of heat transfer augmentation in microfin tubes is
dependent on the flow regime of two-phase flow. Therefore many
investigations of the flow patterns for in-tube evaporation have been
reported in literatures. The gravitational force, surface tension and
the vapor-liquid interfacial shear stress are known as three dominant
factors controlling the vapor and liquid distribution inside the tube. A
review of the existing literature reveals that the previous
investigations were concerned with the two-phase flow pattern for
flow boiling in horizontal tubes [12], [9]. Therefore, the objective of
the present investigation is to obtain information about the two-phase
flow patterns for evaporation of R-134a inside horizontal smooth and
microfin tubes. Also Investigation of heat transfer during flow
boiling of R-134a inside horizontal microfin and smooth tube have
been carried out experimentally The heat transfer coefficients for
annular flow in the smooth tube is shown to agree well with Gungor
and Winterton-s correlation [4]. All the flow patterns occurred in the
test can be divided into three dominant regimes, i.e., stratified-wavy
flow, wavy-annular flow and annular flow. Experimental data are
plotted in two kinds of flow maps, i.e., Weber number for the vapor
versus weber number for the liquid flow map and mass flux versus
vapor quality flow map. The transition from wavy-annular flow to
annular or stratified-wavy flow is identified in the flow maps.

3

16009

A Meta-Heuristic Algorithm for Set Covering Problem Based on Gravity

A new Meta heuristic approach called "Randomized gravitational emulation search algorithm (RGES)" for solving large size set covering problems has been designed. This algorithm is found upon introducing randomization concept along with the two of the four primary parameters -velocity- and -gravity- in physics. A new heuristic operator is introduced in the domain of RGES to maintain feasibility specifically for the set covering problem to yield best solutions. The performance of this algorithm has been evaluated on a large set of benchmark problems from OR-library. Computational results showed that the randomized gravitational emulation search algorithm - based heuristic is capable of producing high quality solutions. The performance of this heuristic when compared with other existing heuristic algorithms is found to be excellent in terms of solution quality.

2

11249

A Meta-Heuristic Algorithm for Vertex Covering Problem Based on Gravity

A new Meta heuristic approach called "Randomized gravitational emulation search algorithm (RGES)" for solving vertex covering problems has been designed. This algorithm is found upon introducing randomization concept along with the two of the four primary parameters -velocity- and -gravity- in physics. A new heuristic operator is introduced in the domain of RGES to maintain feasibility specifically for the vertex covering problem to yield best solutions. The performance of this algorithm has been evaluated on a large set of benchmark problems from OR-library. Computational results showed that the randomized gravitational emulation search algorithm - based heuristic is capable of producing high quality solutions. The performance of this heuristic when compared with other existing heuristic algorithms is found to be excellent in terms of solution quality.

1

14712

Gravitational and Centrifugal Forces in the Nut-Kerr-Newman Space-Time

Nayak et al have discussed in detail the inertial forces
such as Gravitational, Coriolis-Lense-Thirring and Centrifugal forces
in the Kerr-Newman Space-time in the Kerr-Newman Space-time.
The main theme of this paper is to study the Gravitational and
Centrifugal forces in the NUT-Kerr-Newman Space-time.