9

10008927

Optimal Mitigation of Slopes by Probabilistic Methods

A probabilistic formulation to assess the slopes safety under the hazard of strong storms is presented and illustrated through a slope in Mexico. The formulation is based on the classical safety factor (SF) used in practice to appraise the slope stability, but it is introduced the treatment of uncertainties, and the slope failure probability is calculated as the probability that SF<1. As the main hazard is the rainfall on the area, statistics of rainfall intensity and duration are considered and modeled with an exponential distribution. The expected life-cycle cost is assessed by considering a monetary value on the slope failure consequences. Alternative mitigation measures are simulated, and the formulation is used to get the measures driving to the optimal one (minimum life-cycle costs). For the example, the optimal mitigation measure is the reduction on the slope inclination angle.

8

10008424

Stochastic Repair and Replacement with a Single Repair Channel

This paper examines the behavior of a system, which upon failure is either replaced with certain probability p or imperfectly repaired with probability q. The system is analyzed using Kolmogorov's forward equations method; the analytical expression for the steady state availability is derived as an indicator of the system’s performance. It is found that the analysis becomes more complex as the number of imperfect repairs increases. It is also observed that the availability increases as the number of states and replacement probability increases. Using such an approach in more complex configurations and in dynamic systems is cumbersome; therefore, it is advisable to resort to simulation or heuristics. In this paper, an example is provided for demonstration.

7

9998645

Software Reliability Prediction Model Analysis

Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.

6

16120

An Evaluation of Average Run Length of MaxEWMA and MaxGWMA Control Charts

Exponentially weighted moving average control chart (EWMA) is a popular chart used for detecting shift in the mean of parameter of distributions in quality control. The objective of this paper is to compare the efficiency of control chart to detect an increases in the mean of a process. In particular, we compared the Maximum Exponentially Weighted Moving Average (MaxEWMA) and Maximum Generally Weighted Moving Average (MaxGWMA) control charts when the observations are Exponential distribution. The criteria for evaluate the performance of control chart is called, the Average Run Length (ARL). The result of comparison show that in the case of process is small sample size, the MaxEWMA control chart is more efficiency to detect shift in the process mean than MaxGWMA control chart. For the case of large sample size, the MaxEWMA control chart is more sensitive to detect small shift in the process mean than MaxGWMA control chart, and when the process is a large shift in mean, the MaxGWMA control chart is more sensitive to detect mean shift than MaxEWMA control chart.

5

14190

A Hidden Markov Model for Modeling Pavement Deterioration under Incomplete Monitoring Data

In this paper, the potential use of an exponential
hidden Markov model to model a hidden pavement deterioration
process, i.e. one that is not directly measurable, is investigated. It is
assumed that the evolution of the physical condition, which is the
hidden process, and the evolution of the values of pavement distress
indicators, can be adequately described using discrete condition states
and modeled as a Markov processes. It is also assumed that condition
data can be collected by visual inspections over time and represented
continuously using an exponential distribution. The advantage of
using such a model in decision making process is illustrated through
an empirical study using real world data.

4

8335

Systems with Queueing and their Simulation

In the queueing theory, it is assumed that customer
arrivals correspond to a Poisson process and service time has the
exponential distribution. Using these assumptions, the behaviour of
the queueing system can be described by means of Markov chains
and it is possible to derive the characteristics of the system. In the
paper, these theoretical approaches are presented on several types of
systems and it is also shown how to compute the characteristics in a
situation when these assumptions are not satisfied

3

8115

Analysis of Linked in Series Servers with Blocking, Priority Feedback Service and Threshold Policy

The use of buffer thresholds, blocking and adequate
service strategies are well-known techniques for computer networks
traffic congestion control. This motivates the study of series queues
with blocking, feedback (service under Head of Line (HoL) priority
discipline) and finite capacity buffers with thresholds. In this paper,
the external traffic is modelled using the Poisson process and the
service times have been modelled using the exponential distribution.
We consider a three-station network with two finite buffers, for
which a set of thresholds (tm1 and tm2) is defined. This computer
network behaves as follows. A task, which finishes its service at
station B, gets sent back to station A for re-processing with
probability o. When the number of tasks in the second buffer exceeds
a threshold tm2 and the number of task in the first buffer is less than
tm1, the fed back task is served under HoL priority discipline. In
opposite case, for fed backed tasks, “no two priority services in
succession" procedure (preventing a possible overflow in the first
buffer) is applied. Using an open Markovian queuing schema with
blocking, priority feedback service and thresholds, a closed form
cost-effective analytical solution is obtained. The model of servers
linked in series is very accurate. It is derived directly from a twodimensional
state graph and a set of steady-state equations, followed
by calculations of main measures of effectiveness. Consequently,
efficient expressions of the low computational cost are determined.
Based on numerical experiments and collected results we conclude
that the proposed model with blocking, feedback and thresholds can
provide accurate performance estimates of linked in series networks.

2

14019

Advanced Stochastic Models for Partially Developed Speckle

Speckled images arise when coherent microwave,
optical, and acoustic imaging techniques are used to image an object, surface or scene. Examples of coherent imaging systems include synthetic aperture radar, laser imaging systems, imaging sonar
systems, and medical ultrasound systems. Speckle noise is a form of object or target induced noise that results when the surface of the object is Rayleigh rough compared to the wavelength of the illuminating radiation. Detection and estimation in images corrupted
by speckle noise is complicated by the nature of the noise and is not
as straightforward as detection and estimation in additive noise. In
this work, we derive stochastic models for speckle noise, with an emphasis on speckle as it arises in medical ultrasound images. The
motivation for this work is the problem of segmentation and tissue classification using ultrasound imaging. Modeling of speckle in this
context involves partially developed speckle model where an underlying Poisson point process modulates a Gram-Charlier series
of Laguerre weighted exponential functions, resulting in a doubly
stochastic filtered Poisson point process. The statistical distribution of partially developed speckle is derived in a closed canonical form.
It is observed that as the mean number of scatterers in a resolution cell is increased, the probability density function approaches an
exponential distribution. This is consistent with fully developed speckle noise as demonstrated by the Central Limit theorem.

1

10390

VoIP Source Model based on the Hyperexponential Distribution

In this paper we present a statistical analysis of Voice
over IP (VoIP) packet streams produced by the G.711 voice coder
with voice activity detection (VAD). During telephone conversation,
depending whether the interlocutor speaks (ON) or remains silent
(OFF), packets are produced or not by a voice coder. As index of
dispersion for both ON and OFF times distribution was greater than
one, we used hyperexponential distribution for approximation of
streams duration. For each stage of the hyperexponential distribution,
we tested goodness of our fits using graphical methods, we calculated
estimation errors, and performed Kolmogorov-Smirnov test.
Obtained results showed that the precise VoIP source model can be
based on the five-state Markov process.