International Science Index

72
10007810
A Real Time Expert System for Decision Support in Nuclear Power Plants
Abstract:

In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.

Paper Detail
3
downloads
71
10006644
Ontology-Driven Generation of Radiation Protection Procedures
Abstract:
In this article, we present the principle and suitable methodology for the design of a medical ontology that highlights the radiological and dosimetric knowledge, applied in diagnostic radiology and radiation-therapy. Our ontology, which we named «Onto.Rap», is the subject of radiation protection in medical and radiology centers by providing a standardized regulatory oversight. Thanks to its added values of knowledge-sharing, reuse and the ease of maintenance, this ontology tends to solve many problems. Of which we name the confusion between radiological procedures a practitioner might face while performing a patient radiological exam. Adding to it, the difficulties they might have in interpreting applicable patient radioprotection standards. Here, the ontology, thanks to its concepts simplification and expressiveness capabilities, can ensure an efficient classification of radiological procedures. It also provides an explicit representation of the relations between the different components of the studied concept. In fact, an ontology based-radioprotection expert system, when used in radiological center, could implement systematic radioprotection best practices during patient exam and a regulatory compliance service auditing afterwards.
Paper Detail
137
downloads
70
10006832
Aerobic Bioprocess Control Using Artificial Intelligence Techniques
Abstract:
This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.
Paper Detail
105
downloads
69
10004751
A Mixed Expert Evaluation System and Dynamic Interval-Valued Hesitant Fuzzy Selection Approach
Abstract:
In the last decades, concerns about the environmental issues lead to professional and academic efforts on green supplier selection problems. In this sake, one of the main issues in evaluating the green supplier selection problems, which could increase the uncertainty, is the preferences of the experts' judgments about the candidate green suppliers. Therefore, preparing an expert system to evaluate the problem based on the historical data and the experts' knowledge can be sensible. This study provides an expert evaluation system to assess the candidate green suppliers under selected criteria in a multi-period approach. In addition, a ranking approach under interval-valued hesitant fuzzy set (IVHFS) environment is proposed to select the most appropriate green supplier in planning horizon. In the proposed ranking approach, the IVHFS and the last aggregation approach are considered to margin the errors and to prevent data loss, respectively. Hence, a comparative analysis is provided based on an illustrative example to show the feasibility of the proposed approach.
Paper Detail
602
downloads
68
10004827
A Hybrid Expert System for Generating Stock Trading Signals
Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Paper Detail
810
downloads
67
10003532
An Expert System for Assessment of Learning Outcomes for ABET Accreditation
Abstract:

Learning outcomes of a course (CLOs) and the abilities at the time of graduation referred to as Student Outcomes (SOs) are required to be assessed for ABET accreditation. A question in an assessment must target a CLO as well as an SO and must represent a required level of competence. This paper presents the idea of an Expert System (ES) to select a proper question to satisfy ABET accreditation requirements. For ES implementation, seven attributes of a question are considered including the learning outcomes and Bloom’s Taxonomy level. A database contains all the data about a course including course content topics, course learning outcomes and the CLO-SO relationship matrix. The knowledge base of the presented ES contains a pool of questions each with tags of the specified attributes. Questions and the attributes represent expert opinions. With implicit rule base the inference engine finds the best possible question satisfying the required attributes. It is shown that the novel idea of such an ES can be implemented and applied to a course with success. An application example is presented to demonstrate the working of the proposed ES.

Paper Detail
702
downloads
66
10002882
Web Application for Evaluating Tests in Distance Learning Systems
Abstract:
Distance learning systems offer useful methods of learning and usually contain a final course test or another form of test. The paper proposes a web application for evaluating tests using an expert system in distance learning systems. The proposed web application is appropriate for didactic tests or tests with results for subsequent studying follow-up courses. The web application works with test questions and uses an expert system and LFLC tool for test evaluation. After test evaluation, the results are visualized and shown to the student.
Paper Detail
702
downloads
65
10002080
On-line Control of the Natural and Anthropogenic Safety in Krasnoyarsk Region
Abstract:
This paper presents an approach of on-line control of the state of technosphere and environment objects based on the integration of Data Warehouse, OLAP and Expert systems technologies. It looks at the structure and content of data warehouse that provides consolidation and storage of monitoring data. There is a description of OLAP-models that provide a multidimensional analysis of monitoring data and dynamic analysis of principal parameters of controlled objects. The authors suggest some criteria of emergency risk assessment using expert knowledge about danger levels. It is demonstrated now some of the proposed solutions could be adopted in territorial decision making support systems. Operational control allows authorities to detect threat, prevent natural and anthropogenic emergencies and ensure a comprehensive safety of territory.
Paper Detail
1075
downloads
64
10000608
RASPE – Risk Advisory Smart System for Pipeline Projects in Egypt
Abstract:

A knowledge-based expert system with the acronym RASPE is developed as an application tool to help decision makers in construction companies make informed decisions about managing risks in pipeline construction projects. Choosing to use expert systems from all available artificial intelligence techniques is due to the fact that an expert system is more suited to representing a domain’s knowledge and the reasoning behind domain-specific decisions. The knowledge-based expert system can capture the knowledge in the form of conditional rules which represent various project scenarios and potential risk mitigation/response actions. The built knowledge in RASPE is utilized through the underlying inference engine that allows the firing of rules relevant to a project scenario into consideration. Paper provides an overview of the knowledge acquisition process and goes about describing the knowledge structure which is divided up into four major modules. The paper shows one module in full detail for illustration purposes and concludes with insightful remarks.

Paper Detail
1529
downloads
63
10000692
On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment – A Practical Example
Abstract:

With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.

Paper Detail
1395
downloads
62
10001109
Decision Support System for a Pilot Flash Flood Early Warning System in Central Chile
Abstract:

Flash Floods, together with landslides, are a common natural threat for people living in mountainous regions and foothills. One way to deal with this constant menace is the use of Early Warning Systems, which have become a very important mitigation strategy for natural disasters. In this work we present our proposal for a pilot Flash Flood Early Warning System for Santiago, Chile, the first stage of a more ambitious project that in a future stage shall also include early warning of landslides. To give a context for our approach, we first analyze three existing Flash Flood Early Warning Systems, focusing on their general architectures. We then present our proposed system, with main focus on the decision support system, a system that integrates empirical models and fuzzy expert systems to achieve reliable risk estimations.

Paper Detail
1367
downloads
61
10002913
Field Experience with Sweep Frequency Response Analysis for Power Transformer Diagnosis
Abstract:
Sweep frequency response analysis has been turning out a powerful tool for investigation of mechanical as well as electrical integration of transformers. In this paper various aspect of practical application of SFRA has been studied. Open circuit and short circuit measurement were done on different phases of high voltage and low voltage winding. A case study was presented for the transformer of rating 31.5 MVA for various frequency ranges. A clear picture was presented for sub- frequency ranges for HV as well as LV winding. The main motive of work is to investigate high voltage short circuit response. The theoretical concept about SFRA responses is validated with expert system software results.
Paper Detail
1272
downloads
60
10000642
A Methodology for the Synthesis of Multi-Processors
Abstract:

Random epistemologies and hash tables have garnered minimal interest from both security experts and experts in the last several years. In fact, few information theorists would disagree with the evaluation of expert systems. In our research, we discover how flip-flop gates can be applied to the study of superpages. Though such a hypothesis at first glance seems perverse, it is derived from known results.

Paper Detail
1281
downloads
59
9998616
Visualization of Quantitative Thresholds in Stocks
Abstract:

Technical analysis comprised by various technical indicators is a holistic way of representing price movement of stocks in the market. Various forms of indicators have evolved from the primitive ones in the past decades. There have been many attempts to introduce volume as a major determinant to determine strong patterns in market forecasting. The law of demand defines the relationship between the volume and price. Most of the traders are familiar with the volume game. Including the time dimension to the law of demand provides a different visualization to the theory. While attempting the same, it was found that there are different thresholds in the market for different companies. These thresholds have a significant influence on the price. This article is an attempt in determining the thresholds for companies using the three dimensional graphs for optimizing the portfolios. It also emphasizes on the magnitude of importance of volumes as a key factor for determining of predicting strong price movements, bullish and bearish markets. It uses a comprehensive data set of major companies which form a major chunk of the Indian automotive sector and are thus used as an illustration.

Paper Detail
1399
downloads
58
9999574
A Multi-Agent Intelligent System for Monitoring Health Conditions of Elderly People
Abstract:

In this paper, we propose a multi-agent intelligent system that is used for monitoring the health conditions of elderly people. Monitoring the health condition of elderly people is a complex problem that involves different medical units and requires continuous monitoring. Such expert system is highly needed in rural areas because of inadequate number of available specialized physicians or nurses. Such monitoring must have autonomous interactions between these medical units in order to be effective. A multi-agent system is formed by a community of agents that exchange information and proactively help one another to achieve the goal of elderly monitoring. The agents in the developed system are equipped with intelligent decision maker that arms them with the rule-based reasoning capability that can assist the physicians in making decisions regarding the medical condition of elderly people.

Paper Detail
1254
downloads
57
9997557
An Expert System Designed to Be Used with MOEAs for Efficient Portfolio Selection
Abstract:

This study presents an Expert System specially designed to be used with Multiobjective Evolutionary Algorithms (MOEAs) for the solution of the portfolio selection problem. The validation of the proposed hybrid System is done by using data sets from Hang Seng 31 in Hong Kong, DAX 100 in Germany and FTSE 100 in UK. The performance of the proposed system is assessed in comparison with the Non-dominated Sorting Genetic Algorithm II (NSGAII). The evaluation of the performance is based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it. The results show that the proposed hybrid system is efficient for the solution of this kind of problems.

Paper Detail
1052
downloads
56
9997422
Statistical Analysis and Predictive Learning of Mechanical Parameters for TiO2 Filled GFRP Composite
Abstract:

The new, polymer composites consisting of e-glass fiber reinforcement with titanium oxide filler in the double bonded unsaturated polyester resin matrix were made. The glass fiber and titanium oxide reinforcement composites were made in three different fiber lengths (3cm, 5cm, and 7cm), filler content (2 wt%, 4 wt%, and 6 wt%) and fiber content (20 wt%, 40 wt%, and 60 wt%). 27 different compositions were fabricated and a sequence of experiments were carried out to determine tensile strength and impact strength. The vital influencing factors fiber length, fiber content and filler content were chosen as 3 factors in 3 levels of Taguchi’s L9 orthogonal array. The influences of parameters were determined for tensile strength and impact strength by Analysis of variance (ANOVA) and S/N ratio. Using Artificial Neural Network (ANN) an expert system was devised to predict the properties of hybrid reinforcement GFRP composites. The predict models were experimentally proved with the maximum coincidence.

Paper Detail
1597
downloads
55
9997678
A TIPSO-SVM Expert System for Efficient Classification of TSTO Surrogates
Abstract:

Fully reusable spaceplanes do not exist as yet. This implies that design-qualification for optimized highly-integrated forebody-inlet configuration of booster-stage vehicle cannot be based on archival data of other spaceplanes. Therefore, this paper proposes a novel TIPSO-SVM expert system methodology. A non-trivial problem related to optimization and classification of hypersonic forebody-inlet configuration in conjunction with mass-model of the two-stage-to-orbit (TSTO) vehicle is solved. The hybrid-heuristic machine learning methodology is based on two-step improved particle swarm optimizer (TIPSO) algorithm and two-step support vector machine (SVM) data classification method. The efficacy of method is tested by first evolving an optimal configuration for hypersonic compression system using TIPSO algorithm; thereafter, classifying the results using two-step SVM method. In the first step extensive but non-classified mass-model training data for multiple optimized configurations is segregated and pre-classified for learning of SVM algorithm. In second step the TIPSO optimized mass-model data is classified using the SVM classification. Results showed remarkable improvement in configuration and mass-model along with sizing parameters.

Paper Detail
1473
downloads
54
9997726
Knowledge Based Chords Manipulation in MES
Abstract:

Chord formation in western music notations is an intelligent art form which is learnt over the years by a musician to acquire it. Still it is a question of creativity that brings the perfect chord sequence that matches music score. This work focuses on the process of forming chords using a custom-designed knowledgebase (KB) of Music Expert System. An optimal Chord-Set for a given music score is arrived by using the chord-pool in the KB and the finding the chord match using Jusic Distance (JD). Conceptual Graph based knowledge representation model is followed for knowledge storage and retrieval in the knowledgebase.

Paper Detail
1271
downloads
53
9997198
Life Estimation of Induction Motor Insulation under Non-Sinusoidal Voltage and Current Waveforms Using Fuzzy Logic
Abstract:

Thyristor based firing angle controlled voltage regulators are extensively used for speed control of single phase induction motors. This leads to power saving but the applied voltage and current waveforms become non-sinusoidal. These non-sinusoidal waveforms increase voltage and thermal stresses which result into accelerated insulation aging, thus reducing the motor life. Life models that allow predicting the capability of insulation under such multi-stress situations tend to be very complex and somewhat impractical. This paper presents the fuzzy logic application to investigate the synergic effect of voltage and thermal stresses on intrinsic aging of induction motor insulation. A fuzzy expert system is developed to estimate the life of induction motor insulation under multiple stresses. Three insulation degradation parameters, viz. peak modification factor, wave shape modification factor and thermal loss are experimentally obtained for different firing angles. Fuzzy expert system consists of fuzzyfication of the insulation degradation parameters, algorithms based on inverse power law to estimate the life and defuzzyficaton process to output the life. An electro-thermal life model is developed from the results of fuzzy expert system. This fuzzy logic based electro-thermal life model can be used for life estimation of induction motors operated with non-sinusoidal voltage and current waveforms.

Paper Detail
1899
downloads
52
17280
Development of Mobile Application Social Guidance and Counseling for Junior High School
Abstract:

At this paper, we will present the development of mobile application Social Guidance and Counseling (GC) that called “m-NingBK: Social GC”. The application is used for GC services that run on mobile devices. The application is designed specifically for Junior High School student. The methods are a combination of interactive multimedia approaches and educational psychology. Therefore, the design process is carried out three processes, which are digitizing of material social GC services, visualizing wisely and making interactive. This method is intended to make students not only hear and see but also "do" the virtual. There are five components used in multimedia applications "m-NingBK: Social GC" i.e. text, images / graphics, audio / sound, animation and video. Four menus provided by this application is the potential self, social, Expert System and about. The application is built using the Java programming language. This application was tested using a Smartphone with Android Operating System. Based on the test, people give rating: 16.7% excellent, 61.1% good, 19.4% adequate, and 2.8% poor.

Paper Detail
1726
downloads
51
16942
The Strategy of Creating a Virtual Interactive Platform for the Low-Carbon Open Innovations Relay
Abstract:

A strategy for the creation of a Virtual Interactive Platform (or Networking Platform) to combine the four web-baseness of expert systems on the transfer and diffusion of low-carbon technologies. It used the concept of “Open Innovation” and “Triple Helix” with regard to theories of “Green Growth” and “Carbon Footprint”. Interpreters expert systems operate on the basis of models of the “Predator-Prey” for the process of transfer and diffusion of technologies, taking into account the features caused by the need to mitigate the effects of climate change.

Paper Detail
1265
downloads
50
5149
Tele-Diagnosis System for Rural Thailand
Abstract:
Thailand-s health system is challenged by the rising number of patients and decreasing ratio of medical practitioners/patients, especially in rural areas. This may tempt inexperienced GPs to rush through the process of anamnesis with the risk of incorrect diagnosis. Patients have to travel far to the hospital and wait for a long time presenting their case. Many patients try to cure themselves with traditional Thai medicine. Many countries are making use of the Internet for medical information gathering, distribution and storage. Telemedicine applications are a relatively new field of study in Thailand; the infrastructure of ICT had hampered widespread use of the Internet for using medical information. With recent improvements made health and technology professionals can work out novel applications and systems to help advance telemedicine for the benefit of the people. Here we explore the use of telemedicine for people with health problems in rural areas in Thailand and present a Telemedicine Diagnosis System for Rural Thailand (TEDIST) for diagnosing certain conditions that people with Internet access can use to establish contact with Community Health Centers, e.g. by mobile phone. The system uses a Web-based input method for individual patients- symptoms, which are taken by an expert system for the analysis of conditions and appropriate diseases. The analysis harnesses a knowledge base and a backward chaining component to find out, which health professionals should be presented with the case. Doctors have the opportunity to exchange emails or chat with the patients they are responsible for or other specialists. Patients- data are then stored in a Personal Health Record.
Paper Detail
1725
downloads
49
10229
Data Mining Applied to the Predictive Model of Triage System in Emergency Department
Abstract:
The Emergency Department of a medical center in Taiwan cooperated to conduct the research. A predictive model of triage system is contracted from the contract procedure, selection of parameters to sample screening. 2,000 pieces of data needed for the patients is chosen randomly by the computer. After three categorizations of data mining (Multi-group Discriminant Analysis, Multinomial Logistic Regression, Back-propagation Neural Networks), it is found that Back-propagation Neural Networks can best distinguish the patients- extent of emergency, and the accuracy rate can reach to as high as 95.1%. The Back-propagation Neural Networks that has the highest accuracy rate is simulated into the triage acuity expert system in this research. Data mining applied to the predictive model of the triage acuity expert system can be updated regularly for both the improvement of the system and for education training, and will not be affected by subjective factors.
Paper Detail
1483
downloads
48
2869
M2LGP: Mining Multiple Level Gradual Patterns
Abstract:
Gradual patterns have been studied for many years as they contain precious information. They have been integrated in many expert systems and rule-based systems, for instance to reason on knowledge such as “the greater the number of turns, the greater the number of car crashes”. In many cases, this knowledge has been considered as a rule “the greater the number of turns → the greater the number of car crashes” Historically, works have thus been focused on the representation of such rules, studying how implication could be defined, especially fuzzy implication. These rules were defined by experts who were in charge to describe the systems they were working on in order to turn them to operate automatically. More recently, approaches have been proposed in order to mine databases for automatically discovering such knowledge. Several approaches have been studied, the main scientific topics being: how to determine what is an relevant gradual pattern, and how to discover them as efficiently as possible (in terms of both memory and CPU usage). However, in some cases, end-users are not interested in raw level knowledge, and are rather interested in trends. Moreover, it may be the case that no relevant pattern can be discovered at a low level of granularity (e.g. city), whereas some can be discovered at a higher level (e.g. county). In this paper, we thus extend gradual pattern approaches in order to consider multiple level gradual patterns. For this purpose, we consider two aggregation policies, namely horizontal and vertical.
Paper Detail
955
downloads
47
10290
Expert System for Sintering Process Control based on the Information about solid-fuel Flow Composition
Abstract:
Usually, the solid-fuel flow of an iron ore sinter plant consists of different types of the solid-fuels, which differ from each other. Information about the composition of the solid-fuel flow usually comes every 8-24 hours. It can be clearly seen that this information cannot be used to control the sintering process in real time. Due to this, we propose an expert system which uses indirect measurements from the process in order to obtain the composition of the solid-fuel flow by solving an optimization task. Then this information can be used to control the sintering process. The proposed technique can be successfully used to improve sinter quality and reduce the amount of solid-fuel used by the process.
Paper Detail
1152
downloads
46
3413
A Methodology for Data Migration between Different Database Management Systems
Abstract:

In present days the area of data migration is very topical. Current tools for data migration in the area of relational database have several disadvantages that are presented in this paper. We propose a methodology for data migration of the database tables and their data between various types of relational database systems (RDBMS). The proposed methodology contains an expert system. The expert system contains a knowledge base that is composed of IFTHEN rules and based on the input data suggests appropriate data types of columns of database tables. The proposed tool, which contains an expert system, also includes the possibility of optimizing the data types in the target RDBMS database tables based on processed data of the source RDBMS database tables. The proposed expert system is shown on data migration of selected database of the source RDBMS to the target RDBMS.

Paper Detail
1712
downloads
45
11477
A Methodology for Creating a Conceptual Model Under Uncertainty
Abstract:

This article deals with the conceptual modeling under uncertainty. First, the division of information systems with their definition will be described, focusing on those where the construction of a conceptual model is suitable for the design of future information system database. Furthermore, the disadvantages of the traditional approach in creating a conceptual model and database design will be analyzed. A comprehensive methodology for the creation of a conceptual model based on analysis of client requirements and the selection of a suitable domain model is proposed here. This article presents the expert system used for the construction of a conceptual model and is a suitable tool for database designers to create a conceptual model.

Paper Detail
923
downloads
44
5734
Computational Fluid Dynamics Expert System using Artificial Neural Networks
Abstract:
The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver.
Paper Detail
1754
downloads
43
11378
Risk Level Evaluation for Power System Facilities in Smart Grid
Abstract:
Reliability Centered Maintenance(RCM) is one of most widely used methods in the modern power system to schedule a maintenance cycle and determine the priority of inspection. In order to apply the RCM method to the Smart Grid, a precedence study for the new structure of rearranged system should be performed due to introduction of additional installation such as renewable and sustainable energy resources, energy storage devices and advanced metering infrastructure. This paper proposes a new method to evaluate the priority of maintenance and inspection of the power system facilities in the Smart Grid using the Risk Priority Number. In order to calculate that risk index, it is required that the reliability block diagram should be analyzed for the Smart Grid system. Finally, the feasible technical method is discussed to estimate the risk potential as part of the RCM procedure.
Paper Detail
1104
downloads