5

10007366

BeamGA Median: A Hybrid Heuristic Search Approach

The median problem is significantly applied to derive
the most reasonable rearrangement phylogenetic tree for many
species. More specifically, the problem is concerned with finding
a permutation that minimizes the sum of distances between itself
and a set of three signed permutations. Genomes with equal number
of genes but different order can be represented as permutations.
In this paper, an algorithm, namely BeamGA median, is proposed
that combines a heuristic search approach (local beam) as an
initialization step to generate a number of solutions, and then a
Genetic Algorithm (GA) is applied in order to refine the solutions,
aiming to achieve a better median with the smallest possible reversal
distance from the three original permutations. In this approach,
any genome rearrangement distance can be applied. In this paper,
we use the reversal distance. To the best of our knowledge, the
proposed approach was not applied before for solving the median
problem. Our approach considers true biological evolution scenario
by applying the concept of common intervals during the GA
optimization process. This allows us to imitate a true biological
behavior and enhance genetic approach time convergence. We were
able to handle permutations with a large number of genes, within
an acceptable time performance and with same or better accuracy as
compared to existing algorithms.

4

9999294

A Hybrid Heuristic for the Team Orienteering Problem

In this work, we propose a hybrid heuristic in order to solve the Team Orienteering Problem (TOP). Given a set of points (or customers), each with associated score (profit or benefit), and a team that has a fixed number of members, the problem to solve is to visit a subset of points in order to maximize the total collected score. Each member performs a tour starting at the start point, visiting distinct customers and the tour terminates at the arrival point. In addition, each point is visited at most once, and the total time in each tour cannot be greater than a given value. The proposed heuristic combines beam search and a local optimization strategy. The algorithm was tested on several sets of instances and encouraging results were obtained.

3

11991

A Hybridization of Constructive Beam Search with Local Search for Far From Most Strings Problem

The Far From Most Strings Problem (FFMSP) is to obtain a string which is far from as many as possible of a given set of strings. All the input and the output strings are of the same length, and two strings are said to be far if their hamming distance is greater than or equal to a given positive integer. FFMSP belongs to the class of sequences consensus problems which have applications in molecular biology. The problem is NP-hard; it does not admit a constant-ratio approximation either, unless P = NP. Therefore, in addition to exact and approximate algorithms, (meta)heuristic algorithms have been proposed for the problem in recent years. On the other hand, in the recent years, hybrid algorithms have been proposed and successfully used for many hard problems in a variety of domains. In this paper, a new metaheuristic algorithm, called Constructive Beam and Local Search (CBLS), is investigated for the problem, which is a hybridization of constructive beam search and local search algorithms. More specifically, the proposed algorithm consists of two phases, the first phase is to obtain several candidate solutions via the constructive beam search and the second phase is to apply local search to the candidate solutions obtained by the first phase. The best solution found is returned as the final solution to the problem. The proposed algorithm is also similar to memetic algorithms in the sense that both use local search to further improve individual solutions. The CBLS algorithm is compared with the most recent published algorithm for the problem, GRASP, with significantly positive results; the improvement is by order of magnitudes in most cases.

2

9043

An Augmented Beam-search Based Algorithm for the Strip Packing Problem

In this paper, the use of beam search and look-ahead strategies for solving the strip packing problem (SPP) is investigated. Given a strip of fixed width W, unlimited length L, and a set of n circular pieces of known radii, the objective is to determine the minimum length of the initial strip that packs all the pieces. An augmented algorithm which combines beam search and a look-ahead strategies is proposed. The look-ahead is used in order to evaluate the nodes at each level of the tree search. The best nodes are then retained for branching. The computational investigation showed that the proposed augmented algorithm is able to improve the best known solutions of the literature on most instances used.

1

3562

An Effective Framework for Chinese Syntactic Parsing

This paper presents an effective framework for Chinesesyntactic parsing, which includes two parts. The first one is a parsing framework, which is based on an improved bottom-up chart parsingalgorithm, and integrates the idea of the beam search strategy of N bestalgorithm and heuristic function of A* algorithm for pruning, then get multiple parsing trees. The second is a novel evaluation model, which integrates contextual and partial lexical information into traditional PCFG model and defines a new score function. Using this model, the tree with the highest score is found out as the best parsing tree. Finally,the contrasting experiment results are given. Keywords?syntactic parsing, PCFG, pruning, evaluation model.