International Science Index

5
10007187
Hybrid Hierarchical Clustering Approach for Community Detection in Social Network
Abstract:
Social Networks generally present a hierarchy of communities. To determine these communities and the relationship between them, detection algorithms should be applied. Most of the existing algorithms, proposed for hierarchical communities identification, are based on either agglomerative clustering or divisive clustering. In this paper, we present a hybrid hierarchical clustering approach for community detection based on both bottom-up and bottom-down clustering. Obviously, our approach provides more relevant community structure than hierarchical method which considers only divisive or agglomerative clustering to identify communities. Moreover, we performed some comparative experiments to enhance the quality of the clustering results and to show the effectiveness of our algorithm.
Paper Detail
85
downloads
4
10007188
A Model Based Metaheuristic for Hybrid Hierarchical Community Structure in Social Networks
Abstract:
In recent years, the study of community detection in social networks has received great attention. The hierarchical structure of the network leads to the emergence of the convergence to a locally optimal community structure. In this paper, we aim to avoid this local optimum in the introduced hybrid hierarchical method. To achieve this purpose, we present an objective function where we incorporate the value of structural and semantic similarity based modularity and a metaheuristic namely bees colonies algorithm to optimize our objective function on both hierarchical level divisive and agglomerative. In order to assess the efficiency and the accuracy of the introduced hybrid bee colony model, we perform an extensive experimental evaluation on both synthetic and real networks.
Paper Detail
74
downloads
3
10000997
Agglomerative Hierarchical Clustering Using the Tθ Family of Similarity Measures
Abstract:

In this work, we begin with the presentation of the Tθ family of usual similarity measures concerning multidimensional binary data. Subsequently, some properties of these measures are proposed. Finally the impact of the use of different inter-elements measures on the results of the Agglomerative Hierarchical Clustering Methods is studied.

Paper Detail
2764
downloads
2
14253
Collaborative and Content-based Recommender System for Social Bookmarking Website
Abstract:

This study proposes a new recommender system based on the collaborative folksonomy. The purpose of the proposed system is to recommend Internet resources (such as books, articles, documents, pictures, audio and video) to users. The proposed method includes four steps: creating the user profile based on the tags, grouping the similar users into clusters using an agglomerative hierarchical clustering, finding similar resources based on the user-s past collections by using content-based filtering, and recommending similar items to the target user. This study examines the system-s performance for the dataset collected from “del.icio.us," which is a famous social bookmarking website. Experimental results show that the proposed tag-based collaborative and content-based filtering hybridized recommender system is promising and effectiveness in the folksonomy-based bookmarking website.

Paper Detail
1417
downloads
1
11825
Journey on Image Clustering Based on Color Composition
Abstract:
Image clustering is a process of grouping images based on their similarity. The image clustering usually uses the color component, texture, edge, shape, or mixture of two components, etc. This research aims to explore image clustering using color composition. In order to complete this image clustering, three main components should be considered, which are color space, image representation (feature extraction), and clustering method itself. We aim to explore which composition of these factors will produce the best clustering results by combining various techniques from the three components. The color spaces use RGB, HSV, and L*a*b* method. The image representations use Histogram and Gaussian Mixture Model (GMM), whereas the clustering methods use KMeans and Agglomerative Hierarchical Clustering algorithm. The results of the experiment show that GMM representation is better combined with RGB and L*a*b* color space, whereas Histogram is better combined with HSV. The experiments also show that K-Means is better than Agglomerative Hierarchical for images clustering.
Paper Detail
1468
downloads