International Science Index

38
10007697
Compact Optical Sensors for Harsh Environments
Abstract:

Optical miniaturized sensors with remote readout are required devices for the monitoring in harsh electromagnetic environments. As an example, in turbo and hydro generators, excessively high vibrations of the end-windings can lead to dramatic damages, imposing very high, additional service costs. A significant change of the generator temperature can also be an indicator of the system failure. Continuous monitoring of vibrations, temperature, humidity, and gases is therefore mandatory. The high electromagnetic fields in the generators impose the use of non-conductive devices in order to prevent electromagnetic interferences and to electrically isolate the sensing element to the electronic readout. Metal-free sensors are good candidates for such systems since they are immune to very strong electromagnetic fields and given the fact that they are non-conductive. We have realized miniature optical accelerometer and temperature sensors for a remote sensing of the harsh environments using the common, inexpensive silicon Micro Electro-Mechanical System (MEMS) platform. Both devices show highly linear response. The accelerometer has a deviation within 1% from the linear fit when tested in a range 0 – 40 g. The temperature sensor can provide the measurement accuracy better than 1 °C in a range 20 – 150 °C. The design of other type of sensors for the environments with high electromagnetic interferences has also been discussed.

Paper Detail
32
downloads
37
10007140
Effect of High-Heeled Shoes on Gait: A Micro-Electro-Mechanical-Systems Based Approach
Abstract:

The accelerations generated by the shoes in the body should be known in order to prevent balance problems, degradation of body shape and to spend less energy. In this study, it is aimed to investigate the effects of the shoe heel height on the human body. The working group has been created as five women (range 27-32 years) with different characteristics and five shoes with different heel heights (1, 3.5, 5, 7 and 9 cm). Individuals in the study group wore shoes and walked along a 20-meter racecourse. The accelerations created by the shoes are measured in three axes (30.270 accelerometric data) and analyzed. Results show us that; while walking with high-heeled shoes, the foot is lifted more; in this case, more effort has been spent. So, more weight has occurred at ankles and joints. Since high-heeled shoes cause greater acceleration, women wearing high-heeled shoes tend to pay more attention when taking a step. As a result, for foot and body health, shoe heel must be designed to absorb the reaction from the ground. High heels disrupt the structure of the foot and it is damaging the body shape. In this respect, this study is considered to be a remarkable method to find of effect of high-heeled shoes on gait by using accelerometer in the literature.

Paper Detail
60
downloads
36
10007671
Augmenting Navigational Aids: The Development of an Assistive Maritime Navigation Application
Abstract:

On the bridge of a ship the officers are looking for visual aids to guide navigation in order to reconcile the outside world with the position communicated by the digital navigation system. Aids to navigation include: Lighthouses, lightships, sector lights, beacons, buoys, and others. They are designed to help navigators calculate their position, establish their course or avoid dangers. In poor visibility and dense traffic areas, it can be very difficult to identify these critical aids to guide navigation. The paper presents the usage of Augmented Reality (AR) as a means to present digital information about these aids to support navigation. To date, nautical navigation related mobile AR applications have been limited to the leisure industry. If proved viable, this prototype can facilitate the creation of other similar applications that could help commercial officers with navigation. While adopting a user centered design approach, the team has developed the prototype based on insights from initial research carried on board of several ships. The prototype, built on Nexus 9 tablet and Wikitude, features a head-up display of the navigational aids (lights) in the area, presented in AR and a bird’s eye view mode presented on a simplified map. The application employs the aids to navigation data managed by Hydrographic Offices and the tablet’s sensors: GPS, gyroscope, accelerometer, compass and camera. Sea trials on board of a Navy and a commercial ship revealed the end-users’ interest in using the application and further possibility of other data to be presented in AR. The application calculates the GPS position of the ship, the bearing and distance to the navigational aids; all within a high level of accuracy. However, during testing several issues were highlighted which need to be resolved as the prototype is developed further. The prototype stretched the capabilities of Wikitude, loading over 500 objects during tests in a major port. This overloaded the display and required over 45 seconds to load the data. Therefore, extra filters for the navigational aids are being considered in order to declutter the screen. At night, the camera is not powerful enough to distinguish all the lights in the area. Also, magnetic interference with the bridge of the ship generated a continuous compass error of the AR display that varied between 5 and 12 degrees. The deviation of the compass was consistent over the whole testing durations so the team is now looking at the possibility of allowing users to manually calibrate the compass. It is expected that for the usage of AR in professional maritime contexts, further development of existing AR tools and hardware is needed. Designers will also need to implement a user-centered design approach in order to create better interfaces and display technologies for enhanced solutions to aid navigation.

Paper Detail
17
downloads
35
10005809
Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms
Abstract:
In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.
Paper Detail
658
downloads
34
10005365
Investigating Activity Recognition Using 9-Axis Sensors and Filters in Wearable Devices
Abstract:
In this paper, we analyze major components of activity recognition (AR) in wearable device with 9-axis sensors and sensor fusion filters. 9-axis sensors commonly include 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. We chose sensor fusion filters as Kalman filter and Direction Cosine Matrix (DCM) filter. We also construct sensor fusion data from each activity sensor data and perform classification by accuracy of AR using Naïve Bayes and SVM. According to the classification results, we observed that the DCM filter and the specific combination of the sensing axes are more effective for AR in wearable devices while classifying walking, running, ascending and descending.
Paper Detail
514
downloads
33
10005085
Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle
Abstract:
A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.
Paper Detail
378
downloads
32
10001469
Quality Control of Automotive Gearbox Based On Vibration Signal Analysis
Abstract:
In more complex systems, such as automotive gearbox, a rigorous treatment of the data is necessary because there are several moving parts (gears, bearings, shafts, etc.), and in this way, there are several possible sources of errors and also noise. The basic objective of this work is the detection of damage in automotive gearbox. The detection methods used are the wavelet method, the bispectrum; advanced filtering techniques (selective filtering) of vibrational signals and mathematical morphology. Gearbox vibration tests were performed (gearboxes in good condition and with defects) of a production line of a large vehicle assembler. The vibration signals are obtained using five accelerometers in different positions of the sample. The results obtained using the kurtosis, bispectrum, wavelet and mathematical morphology showed that it is possible to identify the existence of defects in automotive gearboxes.
Paper Detail
1535
downloads
31
10001443
Low-Cost Inertial Sensors Modeling Using Allan Variance
Abstract:
Micro-electromechanical system (MEMS) accelerometers and gyroscopes are suitable for the inertial navigation system (INS) of many applications due to low price, small dimensions and light weight. The main disadvantage in a comparison with classic sensors is a worse long term stability. The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic errors. In order to eliminate negative effects of these random errors, they must be accurately modeled. In this paper, the Allan variance technique will be used in modeling the stochastic errors of the inertial sensors. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data.
Paper Detail
2513
downloads
30
10000316
Fiber Braggs Grating Sensor Based Instrumentation to Evaluate Postural Balance and Stability on an Unstable Platform
Abstract:

This paper describes a novel application of Fiber Braggs Grating (FBG) sensors in the assessment of human postural stability and balance on an unstable platform. In this work, FBG sensor Stability Analyzing Device (FBGSAD) is developed for measurement of plantar strain to assess the postural stability of subjects on unstable platforms during different stances in eyes open and eyes closed conditions on a rocker board. The studies are validated by comparing the Centre of Gravity (CG) variations measured on the lumbar vertebra of subjects using a commercial accelerometer. The results obtained from the developed FBGSAD depict qualitative similarities with the data recorded by commercial accelerometer. The advantage of the FBGSAD is that it measures simultaneously plantar strain distribution and postural stability of the subject along with its inherent benefits like non-requirement of energizing voltage to the sensor, electromagnetic immunity and simple design which suits its applicability in biomechanical applications. The developed FBGSAD can serve as a tool/yardstick to mitigate space motion sickness, identify individuals who are susceptible to falls and to qualify subjects for balance and stability, which are important factors in the selection of certain unique professionals such as aircraft pilots, astronauts, cosmonauts etc.

Paper Detail
1863
downloads
29
9999446
Using Probe Person Data for Travel Mode Detection
Abstract:

Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.

Paper Detail
1587
downloads
28
9998708
Design of a Low Cost Motion Data Acquisition Setup for Mechatronic Systems
Abstract:

Motion sensors have been commonly used as a valuable component in mechatronic systems, however, many mechatronic designs and applications that need motion sensors cost enormous amount of money, especially high-tech systems. Design of a software for communication protocol between data acquisition card and motion sensor is another issue that has to be solved. This study presents how to design a low cost motion data acquisition setup consisting of MPU 6050 motion sensor (gyro and accelerometer in 3 axes) and Arduino Mega2560 microcontroller. Design parameters are calibration of the sensor, identification and communication between sensor and data acquisition card, interpretation of data collected by the sensor.

Paper Detail
2867
downloads
27
9998393
Experimental Study on the Floor Vibration Evaluation of Concrete Slab for Existing Buildings
Abstract:

Damages from noise and vibration are increasing every year, most of which are noises between floors in deteriorated building caused by floor impact sound. In this study, the concrete slab measured vibration impact sound for evaluation floor vibration of deteriorated buildings that fails to satisfy with the minimum thickness. In this experimental study, the vibration scale by impact sound was calibrated and compared with ISO and AIJ standard for vibration. The results show that vibration in slab with thickness used in existing building reach human perception levels.

Paper Detail
2161
downloads
26
9998590
The Relationships between Physical Activity Levels, Enjoyment of Physical Activity, and Body Mass Index among Bruneian Secondary School Adolescents
Abstract:

The purpose of the study was to examine the relationships between objectively measured physical activity levels (PALs), enjoyment of physical activity (EPA), and body mass index (BMI) among adolescents. A total of 188 12-14-year-old Bruneian secondary school adolescents (88 boys and 100 girls) voluntarily took part in this study. Subjects wore the RT3 accelerometer for seven consecutive days in order to measure their PALs. Times of students’ engagement in total (TPA), light (LPA), moderate (MPV), and vigorous PA (VPA) were obtained from the accelerometer. Their BMIs were calculated from their body height and weight. Physical Activity Enjoyment Scale (PACES) was administrated to obtain their EPA levels. Four key enjoyment factors including fun factors, positive perceptions, unexciting in doing activities, and negative perceptions were identified. Subjects’ social economic status (SES) was provided by school administration. Results show that all the adolescents did not meet the recommended PA guidelines even though boys were engaged in more MVPA than girls. No relationships were found between BMI and all PALs in both boys and girls. BMI was significantly related to the PACES scores (r = -.22, p = 0.01), fun factors (r = -.20, p = 0.05) and positive perceptions (r =- .21, p < 0.05). The PACES scores were significantly related to LPA (r = .18, p = 0.01) but not related to MVPA (r = .04, p > 0.05). After controlling for age and SES, BMI was only significantly related to the PACES scores in girls (r = -.27, p < .01) but boys (r = -.06, p > 0.05). Fun factors were significantly related to LPA and MVPA (p < .01) in girls while negative perceptions were significantly related to LPA and MVPA (p < .01) in boys. This study provides evidence that enjoyment may be a trigger of LPA but MVPA and may be influenced by their BMI status particularly in girls. Based on these findings, physical and health educators are suggested to not only make PA more enjoyable, but also consider gender differences in promoting adolescents' participation in MVPA

Paper Detail
1533
downloads
25
9998162
Identifying Unknown Dynamic Forces Applied on Two Dimensional Frames
Authors:
Abstract:

A time domain approach is used in this paper to identify unknown dynamic forces applied on two dimensional frames using the measured dynamic structural responses for a sub-structure in the two dimensional frame. In this paper a sub-structure finite element model with short length of measurement from only three or four accelerometers is required, and an iterative least-square algorithm is used to identify the unknown dynamic force applied on the structure. Validity of the method is demonstrated with numerical examples using noise-free and noise-contaminated structural responses. Both harmonic and impulsive forces are studied. The results show that the proposed approach can identify unknown dynamic forces within very limited iterations with high accuracy and shows its robustness even noise- polluted dynamic response measurements are utilized.

Paper Detail
860
downloads
24
9997755
1G2A IMU\GPS Integration Algorithm for Land Vehicle Navigation
Abstract:

A general decline in the cost, size, and power requirements of electronics is accelerating the adoption of integrated GPS/INS technologies in consumer applications such Land Vehicle Navigation. Researchers have looking for ways to eliminate additional components from product designs. One possibility is to drop one or more of the relatively expensive gyroscopes from microelectromechanical system (MEMS) versions of inertial measurement units (IMUs). For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a simplified integration algorithm for strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of the low-cost IMU and because of the relatively small area of the trajectory.

Paper Detail
1725
downloads
23
9997984
Design and Simulation Interface Circuit for Piezoresistive Accelerometers with Offset Cancellation Ability
Abstract:

This paper presents a new method for read out of the piezoresistive accelerometer sensors. The circuit works based on Instrumentation amplifier and it is useful for reducing offset In Wheatstone Bridge. The obtained gain is 645 with 1μv/°c Equivalent drift and 1.58mw power consumption. A Schmitt trigger and multiplexer circuit control output node. a high speed counter is designed in this work .the proposed circuit is designed and simulated In 0.18μm CMOS technology with 1.8v power supply.

Paper Detail
1771
downloads
22
9997603
Fuzzy Based Stabilizer Control System for Quad-Rotor
Abstract:

In this paper the design, development and testing of a stabilizer control system for a Quad-rotor is presented which is focused on the maneuverability. The mechanical design is performed along with the design of the controlling algorithm which is devised using fuzzy logic controller. The inputs for the system are the angular positions and angular rates of the Quad-rotor relative to three axes. Then the output data is filtered from an accelerometer and a gyroscope through a Kalman filter. In the development of the stability controlling system Mandani fuzzy model is incorporated. The results prove that the fuzzy based stabilizer control system is superior in high dynamic disturbances compared to the traditional systems which use PID integrated stabilizer control systems.

Paper Detail
3182
downloads
21
10002280
Activity Recognition by Smartphone Accelerometer Data Using Ensemble Learning Methods
Abstract:

As smartphones are equipped with various sensors, there have been many studies focused on using these sensors to create valuable applications. Human activity recognition is one such application motivated by various welfare applications, such as the support for the elderly, measurement of calorie consumption, lifestyle and exercise patterns analyses, and so on. One of the challenges one faces when using smartphone sensors for activity recognition is that the number of sensors should be minimized to save battery power. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we adopt to deal with this twelve-class problem uses various methods. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point, but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window. The experiments compared the performance of four kinds of basic multi-class classifiers and the performance of four kinds of ensemble learning methods based on three kinds of basic multi-class classifiers. The results show that while the method with the highest accuracy is ECOC based on Random forest.

Paper Detail
1148
downloads
20
9997296
Development of a Biomechanical Method for Ergonomic Evaluation: Comparison with Observational Methods
Abstract:

A wide variety of observational methods have been developed to evaluate the ergonomic workloads in manufacturing. However, the precision and accuracy of these methods remain a subject of debate. The aims of this study were to develop biomechanical methods to evaluate ergonomic workloads and to compare them with observational methods.

Two observational methods, i.e. SCANIA Ergonomic Standard (SES) and Rapid Upper Limb Assessment (RULA), were used to assess ergonomic workloads at two simulated workstations. They included four tasks such as tightening & loosening, attachment of tubes and strapping as well as other actions. Sensors were also used to measure biomechanical data (Inclinometers, Accelerometers, and Goniometers).

Our findings showed that in assessment of some risk factors both RULA & SES were in agreement with the results of biomechanical methods. However, there was disagreement on neck and wrist postures. In conclusion, the biomechanical approach was more precise than observational methods, but some risk factors evaluated with observational methods were not measurable with the biomechanical techniques developed.

Paper Detail
3384
downloads
19
17196
Intuitive Robot Control Using Surface EMG and Accelerometer Signals
Abstract:

This paper proposes a method of remotely controlling robots with arm gestures using surface electromyography (EMG) and accelerometer sensors attached to the operator’s wrists. The EMG and accelerometer sensors receive signals from the arm gestures of the operator and infer the corresponding movements to execute the command to control the robot. The movements of the robot include moving forward and backward and turning left and right. The accuracy is over 99% and movements can be controlled in real time.

Paper Detail
1163
downloads
18
16256
Pedometer Development Utilizing an Accelerometer Sensor
Abstract:

This paper develops a pedometer with a three-axis acceleration sensor that can be placed with any angle. The proposed pedometer measures the number of steps while users walk, jog or run. It can be worn on users’ waistband or placed within pocket or backpack. The work address to improve on the general pedometers, which can only be used in a single direction or can only count of steps without the continuous exercise judgment mechanism. Finally, experimental results confirm the superior performance of the proposed pedometer.

Paper Detail
3349
downloads
17
9351
Study of Damage in Beams with Different Boundary Conditions
Abstract:
–In this paper the damage in clamped-free, clampedclamped and free-free beam are analyzed considering samples without and with structural modifications. The damage location is investigated by the use of the bispectrum and wavelet analysis. The mathematical models are obtained using 2D elasticity theory and the Finite Element Method (FEM). The numerical and experimental data are approximated using the Particle Swarm Optimizer (PSO) method and this way is possible to adjust the localization and the severity of the damage. The experimental data are obtained through accelerometers placed along the sample. The system is excited using impact hammer.
Paper Detail
1132
downloads
16
14839
Terrain Evaluation Method for Hexapod Robot
Abstract:
In this paper a simple terrain evaluation method for hexapod robot is introduced. This method is based on feet coordinate evaluation when all are on the ground. Depending on the feet coordinate differences the local terrain evaluation is possible. Terrain evaluation is necessary for right gait selection and/or body position correction. For terrain roughness evaluation three planes are plotted: two of them as definition points use opposite feet coordinates, third coincides with the robot body plane. The leaning angle of body plane is evaluated measuring gravity force using three-axis accelerometer. Terrain roughness evaluation method is based on angle estimation between normal vectors of these planes. Aim of this work is to present a simple method for embedded robot controller, allowing to find the best further movement settings.
Paper Detail
1200
downloads
15
5354
Web Driving Performance Monitoring System
Abstract:

Safer driver behavior promoting is the main goal of this paper. It is a fact that drivers behavior is relatively safer when being monitored. Thus, in this paper, we propose a monitoring system to report specific driving event as well as the potentially aggressive events for estimation of the driving performance. Our driving monitoring system is composed of two parts. The first part is the in-vehicle embedded system which is composed of a GPS receiver, a two-axis accelerometer, radar sensor, OBD interface, and GPRS modem. The design considerations that led to this architecture is described in this paper. The second part is a web server where an adaptive hierarchical fuzzy system is proposed to classify the driving performance based on the data that is sent by the in-vehicle embedded system and the data that is provided by the geographical information system (GIS). Our system is robust, inexpensive and small enough to fit inside a vehicle without distracting the driver.

Paper Detail
1639
downloads
14
2993
Development of the Algorithm for Detecting Falls during Daily Activity using 2 Tri-Axial Accelerometers
Abstract:
Falls are the primary cause of accidents in people over the age of 65, and frequently lead to serious injuries. Since the early detection of falls is an important step to alert and protect the aging population, a variety of research on detecting falls was carried out including the use of accelerators, gyroscopes and tilt sensors. In exiting studies, falls were detected using an accelerometer with errors. In this study, the proposed method for detecting falls was to use two accelerometers to reject wrong falls detection. As falls are accompanied by the acceleration of gravity and rotational motion, the falls in this study were detected by using the z-axial acceleration differences between two sites. The falls were detected by calculating the difference between the analyses of accelerometers placed on two different positions on the chest of the subject. The parameters of the maximum difference of accelerations (diff_Z) and the integration of accelerations in a defined region (Sum_diff_Z) were used to form the fall detection algorithm. The falls and the activities of daily living (ADL) could be distinguished by using the proposed parameters without errors in spite of the impact and the change in the positions of the accelerometers. By comparing each of the axial accelerations, the directions of falls and the condition of the subject afterwards could be determined.In this study, by using two accelerometers without errors attached to two sites to detect falls, the usefulness of the proposed fall detection algorithm parameters, diff_Z and Sum_diff_Z, were confirmed.
Paper Detail
1159
downloads
13
8415
Animal-Assisted Therapy for Persons with Disabilities Based on Canine Tail Language Interpretation via Gaussian-Trapezoidal Fuzzy Emotional Behavior Model
Abstract:
In order to alleviate the mental and physical problems of persons with disabilities, animal-assisted therapy (AAT) is one of the possible modalities that employs the merit of the human-animal interaction. Nevertheless, to achieve the purpose of AAT for persons with severe disabilities (e.g. spinal cord injury, stroke, and amyotrophic lateral sclerosis), real-time animal language interpretation is desirable. Since canine behaviors can be visually notable from its tail, this paper proposes the automatic real-time interpretation of canine tail language for human-canine interaction in the case of persons with severe disabilities. Canine tail language is captured via two 3-axis accelerometers. Directions and frequencies are selected as our features of interests. The novel fuzzy rules based on Gaussian-Trapezoidal model and center of gravity (COG)-based defuzzification method are proposed in order to interpret the features into four canine emotional behaviors, i.e., agitate, happy, scare and neutral as well as its blended emotional behaviors. The emotional behavior model is performed in the simulated dog and has also been evaluated in the real dog with the perfect recognition rate.
Paper Detail
1133
downloads
12
869
Effect of Speed and Torque on Statistical Parameters in Tapered Bearing Fault Detection
Abstract:
The effect of the rotational speed and axial torque on the diagnostics of tapered rolling element bearing defects was investigated. The accelerometer was mounted on the bearing housing and connected to Sound and Vibration Analyzer (SVAN 958) and was used to measure the accelerations from the bearing housing. The data obtained from the bearing was processed to detect damage of the bearing using statistical tools and the results were subsequently analyzed to see if bearing damage had been captured. From this study it can be seen that damage is more evident when the bearing is loaded. Also, at the incipient stage of damage the crest factor and kurtosis values are high but as time progresses the crest factors and kurtosis values decrease whereas the peak and RMS values are low at the incipient stage but increase with damage.
Paper Detail
1510
downloads
11
5949
Analysis of Vibration Signal of DC Motor Based on Hilbert-Huang Transform
Abstract:
This paper presents a signal analysis process for improving energy completeness based on the Hilbert-Huang Transform (HHT). Firstly, the vibration signal of a DC Motor obtained by employing an accelerometer is the model used to analyze the signal. Secondly, the intrinsic mode functions (IMFs) and Hilbert spectrum of the decomposed signal are obtained by applying HHT. The results of the IMFs constituent and the original signal are compared and the process of energy loss is discussed. Finally, the differences between Wavelet Transform (WT) and HHT in analyzing the signal are compared. The simulated results reveal the analysis process based on HHT is advantageous for the enhancement of energy completeness.
Paper Detail
1502
downloads
10
15014
Implementation of Interactive Computer Aided Instruction in Learning of Javanese Traditional Classic Dance
Abstract:
Traditional Javanese classic dance is a valuable inheritance in Java Indonesia. Nowadays, this treasure of culture is no longer belonging to Javanese people only. Many art departments from universities around the world already put this as a subject in their curriculum. Nonetheless, dance is a practical skill. It needs to be practices so often while accompanied by an instructor to get the right technique. An interactive Computer Aided Instruction (iCAI) that can interactively assist the student to practice is developed. By using this software students can conduct a self practice in studio and get some feedbacks from the software. This CAI is not intended to replace the instructor, but to assist them in increasing the student fly-time in practice.
Paper Detail
910
downloads
9
14970
Experimental Study of Dynamic Characteristics of the Electromagnet Actuators with Linear Movement
Abstract:
An approach for experimental measurement of the dynamic characteristics of linear electromagnet actuators is presented. It uses accelerometer sensor to register the armature acceleration. The velocity and displacement of the moving parts can be obtained by integration of the acceleration results. The armature movement of permanent magnet linear actuator is acquired using this technique. The results are analyzed and the performance of the supposed approach is compared with the most commonly used experimental setup where the displacement of the armature vs. time is measured instead of its acceleration.
Paper Detail
904
downloads