International Science Index


Magnetic Properties and Cytotoxicity of Ga-Mn Magnetic Ferrites Synthesized by the Citrate Sol-Gel Method


Magnetic spinel ferrites are materials that possess size, magnetic properties and heating ability adequate for their potential use in biomedical applications. The Mn0.5Ga0.5Fe2O4 magnetic nanoparticles (MNPs) were synthesized by sol-gel method using citric acid as chelating agent of metallic precursors. The synthesized samples were identified by X-Ray Diffraction (XRD) as an inverse spinel structure with no secondary phases. Saturation magnetization (Ms) of crystalline powders was 45.9 emu/g, which was higher than those corresponding to GaFe2O4 (14.2 emu/g) and MnFe2O4 (40.2 emu/g) synthesized under similar conditions, while the coercivity field (Hc) was 27.9 Oe. The average particle size was 18 ± 7 nm. The heating ability of the MNPs was enough to increase the surrounding temperature up to 43.5 °C in 7 min when a quantity of 4.5 mg of MNPs per mL of liquid medium was tested. Cytotoxic effect (hemolysis assay) of MNPs was determined and the results showed hemolytic values below 1% in all tested cases. According to the results obtained, these synthesized nanoparticles can be potentially used as thermoseeds for hyperthermia therapy.

[1] Liu, X.L. & Fan, H.M., "Innovative magnetic nanoparticle platform for magnetic resonance imaging and magnetic fluid hyperthermia applications." Current Opinion in Chemical Engineering. 4, 38-46 (2014).
[2] Mornet, S., Vasseur, S., Grasset, F., Veverka, P., Goglio, G., Demourgues, A., Portier, J., Pollert, E. & Duguet, E., "Magnetic nanoparticle design for medical applications." Progress in Solid State Chemistry. 34, 237-247 (2006).
[3] Hergt, R., Dutz, S., Müller, R. & Zeisberger, M., "Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy." J. Phys.: Condens. Matter. 18, S2919-S2934 (2006).
[4] Lin, M., Huang, J. & Sha, M., "Recent advances in nanosized Mn–Zn ferrite magnetic fluid hyperthermia for cancer treatment." J. Nanosci. Nanotechnol. 14, 792-802 (2014).
[5] Makridis, A., Chatzitheodorou, I., Topouridou, K., Yavropoulou, M.P., Angelakeris, M. & Dendrinou-Samara, C. "A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia." Materials Science and Engineering: C. 63, 663-670 (2016).
[6] Verma, S., Khollam, Y.B., Potdar, H.S. & Deshpande, S.B., "Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method." Materials letters. 58, 1092-1095 (2004).
[7] Kuznetsova, V., Almjasheva, O. & Gusarov, V., "Influence of microwave and ultrasonic treatment on the formation of CoFe2O4 under hydrothermal conditions." Glass Physics and Chemistry. 35, 205-209 (2009).
[8] Manikandan, A., Vijaya, J., Sundararajan, M., Meganathan, C., Kennedy, L. & Bououdina, M., "Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method." Superlattices and Microstructures. 64, 118-131 (2013).
[9] Wang, Y.M., Cao, X., Liu, G.H., Hong, R.H., Chen, Y.M., & et al., "Synthesis of Fe3O4 magnetic fluid used for magnetic resonance imaging and hyperthermia." Journal of Magnetism and Magnetic Materials. 323, 2953-2959 (2011).
[10] Doaga, A., Cojocariu, A.M., Amin, W., Heib, F., Bender, P., Hempelmann, R. & Caltun, O.F., "Synthesis and characterizations of manganese ferrites for hyperthermia applications." Materials Chemistry and Physics. 143, 305-310 (2013).
[11] Mozaffari, M., B. Behdadfar, & J. Amighian, "Preparation and characterization of manganese ferrite nanoparticles via co-precipitation method for hyperthermia." Iranian Journal of Pharmaceutical Sciences. 4, 115-118 (2008).
[12] Iftikhar, A., Islam, M.U., Awan, M.S., Ahmad, M., Naseem, S. & Asif Iqbal, M., "Synthesis of super paramagnetic particles of Mn 1−xMgxFe2O4 ferrites for hyperthermia applications." Journal of Alloys and Compounds. 601, 116-119 (2014).
[13] Lungu, A., Malaescu, I., Marin, C.N., Vlazan, P., & Sfirloaga, P., "The electrical properties of manganese ferrite powders prepared by two different methods." Physica B. 462, 80-85 (2015).
[14] Sharifi, I. & Shokrollahi, H., "Structural, magnetic and Mössbauer evaluation of Mn substituted Co–Zn ferrite nanoparticles synthesized by co-precipitation." Journal of Magnetism and Magnetic Materials, 334, 36-40 (2013).
[15] Farooq, H., Ahmad, M.R., Jamil, Y., Hafeez, A., Mahmood, Z. & Mahmood, T., "Structural and Dielectric Properties of Manganese Ferrite Nanoparticles." J. Basic Appl. Sci. 8, 597-601 (2012).
[16] Aakash, Choubey, R., Das D., & Mukherjee, S., "Effect of doping of manganese ions on the structural and magnetic properties of nickel ferrite." Journal of Alloys and Compounds. 668, 33-39 (2016).
[17] Cao, X., Liu, G., Wang, Y., Li, J. & Hong, R., "Preparation of octahedral shaped Mn0.8Zn0.2Fe2O4 ferrites via co-precipitation." Journal of Alloys and Compounds. 497, L9-L12 (2010).
[18] Kang, E., Park, J., Hwang, Y., Kang, M., Park, J.G., & Hyeon, T., "Direct synthesis of highly crystalline and monodisperse manganese ferrite nanocrystals." J. Phys. Chem. B. 108, 13932-13935 (2004).
[19] Monfared, A.H., Zamanian, A., Beygzadeh, M., Sharif, I. & Mozafari, M., "A rapid and efficient thermal decomposition approach for the synthesis of manganese-zinc/oleylamine core/shell ferrite nanoparticles." Journal of Alloys and Compounds. 693, 1090-1095 2(017).
[20] Vamvakidis, K., Sakellari, D., Angelakeris, M. & Dendrinou-Samara, C., "Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization." J Nanopart Res. 15, 1-11 (2013).
[21] Stoia, M., Barvinsch, P., Barbu, L., Barbu, M. & Stefanescu, M., "Synthesis of nanocrystalline nickel ferrite by thermal decomposition of organic precursors." J Therm Anal Calorim. 108, 1033-1039 (2011).
[22] Yang, H., Zhang, C., Shi, X., Hu, H., Du, X., et al. "Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging." Biomaterials. 31, 3667-3673 (2010).
[23] Bellusci, M., Aliotta, C., Fiorani, D., La Barbera, A., Padella, F., et al "Manganese iron oxide superparamagnetic powder by mechanochemical processing. Nanoparticles functionalization and dispersion in a nanofluid." J Nanopart Res. 14, 1-11 (2012).
[24] Arana, M., Bercoff, P., Jacobo, S., Mendoza, P. & Pasquevich, G., "Mechanochemical synthesis of MnZn ferrite nanoparticles suitable for biocompatible ferrofluids." Ceramics International. 42, 1545-1551 (2016).
[25] Iwasaki, T., Nakatsuka, R., Murase, K., Takata, H., Nakamura, H. & Watano, S., "Simple and rapid synthesis of magnetite/hydroxyapatite composites for hyperthermia treatments via a mechanochemical route." Int. J. Mol. Sci. 14, 9365-9378 (2013).
[26] Bėčytė, V., Mažeika, K., Rakickas, T. & Pakštas, V., "Study of magnetic and structural properties of cobalt-manganese ferrite nanoparticles obtained by mechanochemical synthesis." Materials Chemistry and Physics. 172, 6-10 (2016).
[27] Sasaki, T., Ohara, S., Naka, T., Vejpravova, J., Sechovsky, V., Umetsu, M., et al. "Continuous synthesis of fine MgFe2O4 nanoparticles by supercritical hydrothermal reaction." J. of Supercritical Fluids. 53, 92-94 (2010).
[28] Freire, R., Freitas, P., Ribeiro, T., Vasconcelos, I., Denardin, J. et al. "Effect of solvent composition on the structural and magnetic properties of MnZn ferrite nanoparticles obtained by hydrothermal synthesis." Microfluidics and nanofluidics. 17, 233-244 (2014).
[29] Zahraei, M., Monshi , A., del Puerto Morales, M., Shahbazi-Gahrouei, D., Amirnasr, M. & Behdadfar, B., "Hydrothermal synthesis of fine stabilized superparamagnetic nanoparticles of Zn2+ substituted manganese ferrite." Journal of Magnetism and Magnetic Materials. 393, 429-436 (2015).
[30] Szczygiel, I. & Winiarska, K., "Low-temperature synthesis and characterization of the Mn–Zn ferrite." J Therm Anal Calorim. 104, 577-583 (2010).
[31] Mazario, E., Menendez, N., Herrasti, P., Cañete, M. & Connord, V., Carrey, J., "Magnetic hyperthermia properties of electrosynthesized cobalt ferrite nanoparticles." The Journal of Physical Chemistry C. 117, 11405-11411 (2013).
[32] Phong, P., Nam, P., Manh, D. & Lee, I., "Mn0.5Zn0.5Fe2O4 nanoparticles with high intrinsic loss power for hyperthermia therapy." Journal of Magnetism and Magnetic Materials. 433, 76-83 (2017).
[33] Mosivand, S. & Kazeminezhad, I., "A novel synthesis method for manganese ferrite nanopowders: The effect of manganese salt as inorganic additive in electrosynthesis cell." Ceramics International. 41, 8637-8642 (2015).
[34] Pradhan, P., Giri, J., Banerjee, R., Bellare, J. & Bahadur, D., "Preparation and characterization of manganese ferrite-based magnetic liposomes for hyperthermia treatment of cancer." Journal of Magnetism and Magnetic Materials. 311, 208-215 (2007).
[35] Yang, C. & Jianbo, L., "Preparation and characterization of Mn–Zn ferrite/poly (N, N′-isopropyl acrylamide) core/shell nanocomposites via in-situ polymerization." Materials Letters. 64, 1570-1573 (2010).
[36] Kuruva, P., Matteppanavar, S., Srinath, S. & Thomas, T., "Size control and magnetic property trends in cobalt ferrite nanoparticles synthesized using an aqueous chemical route." IEEE Transactions on Magnetics. 50, 1-8 (2014).
[37] Goswami, P.P., Choudhury, H.A., Chakma, S. & MoholkarV.S., "Sonochemical synthesis of cobalt ferrite nanoparticles." International Journal of Chemical Engineering. 2013, 1-6 (2013).
[38] Gurumoorthy, M., Parasuraman, K., Anbarasu, M. & Balamurugan, K., "Synthesis and Characterization of MnFe2O4 Nanoparticles by Hydrothermal Method." Nano Vision. 5, 39-168 (2015).
[39] Peng, E., Guang, E.S., Chandrasekharan, P., Yang, C.T., Ding, J. et al., "Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications." Small. 8, 3620-3630 (2012).
[40] Pemartin, K., Solans, C., Alvarez, J. & Sanchez, M., "Synthesis of Mn–Zn ferrite nanoparticles by the oil-in-water microemulsion reaction method." Colloids and Surfaces A: Physicochemical and Engineering Aspects. 451, 161-171 (2014).
[41] Sahoo, B., Sanjana, K., Dutta, S., Maiti, T., Pramanik, P. & Dhara, D., "Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications." Journal of colloid and Interface Science. 431, 31-41 (2014).
[42] Sanpo, N., Wang, J. & Berndt, C.C., "Sol-gel synthesized copper-substituted cobalt ferrite nanoparticles for biomedical applications." Journal of nano research. 22, 95-106 (2013).
[43] Jasso-Terán, R.A., Cortés-Hernández, D.A., Sánchez-Fuentes, H.J., Reyes-Rodríguez, P.Y., de-León-Prado, L.E., Escobedo-Bocardo, J.C. & Almanza-Robles, J.M., "Synthesis, characterization and hemolysis studies of Zn(1−x)CaxFe2O4 ferrites synthesized by sol-gel for hyperthermia treatment applications." Journal of Magnetism and Magnetic Materials. 427, 241-244 (2017).
[44] Ali, M.B., Maalam, K.E., Moussaoui, H.E., Mounkachi, O., Hamedoun, M. et al. "Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method." Journal of Magnetism and Magnetic Materials. 398, 20-25 (2016).
[45] Sulaiman, N.H., Ghazali, M.J., Majlis, B.Y., Yunas, J. & Razali, M., "Superparamagnetic calcium ferrite nanoparticles synthesized using a simple sol-gel method for targeted drug delivery." Bio-Medical Materials and Engineering. 26, S103-S110 (2015).
[46] Beji, Z., Hanini, A., Smiri, L.S., Gavard, J., Kacem, K. et al. "Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on Endothelial cells." Chem. Mater. 22, 420-5429 (2010).
[47] Kanagesan, S., Aziz, S.B.A., Hashim, M., Ismail, I., Tamilselvan, S. et al. "Synthesis, Characterization and in vitro evaluation of manganese ferrite (MnFe2O4) nanoparticles for their biocompatibility with murine breast cancer cells (4T1)." Molecules. 21, 312 (2016).
[48] Jeun, M., Park, S., Jang, G. & Lee, K., "Tailoring MgxMn1–xFe2O4 Superparamagnetic Nanoferrites for Magnetic Fluid Hyperthermia Applications." ACS Appl. Mater. Interfaces. 6, 16487-16492 (2014).
[49] Md Gazzali, P., Kanimozhi, V., Priyadharsini, P. & Chandrasekaran, G., "Structural and Magnetic properties of Ultrafine Magnesium Ferrite Nanoparticles." Advanced Materials Research. 938, 128-133 (2014).
[50] Yadav, R.S., Havlica, J., Hnatko, M., Šajgalík, P., Alexander, C. et al. "Magnetic properties of Co1−xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling." Journal of Magnetism and Magnetic Materials. 378, 190-199 (2015).
[51] Bifa, J., Changan, T., Quanzheng, Z., Dongdong, J., Jie, Y. et al. "Magnetic properties of samarium and gadolinium co-doping Mn-Zn ferrites obtained by sol-gel auto-combustion method." Journal of Rare Earths. 34, 1017-1023 (2016).
[52] Ebrahimi, S.S. & Masoudpanah, S.M,, "Effects of pH and citric acid content on the structure and magnetic properties of MnZn ferrite nanoparticles synthesized by a sol–gel autocombustion method." Journal of Magnetism and Magnetic Materials. 357, 77-81 (2014).
[53] Masoudpanah, S.M., Seyyed, S.A., Derakhshani, M. & Mirkazemi, S.M., "Structure and magnetic properties of La substituted ZnFe2O4 nanoparticles synthesized by sol–gel autocombustion method." Journal of Magnetism and Magnetic Materials. 370, 122-126 (2014).
[54] Deganello, F., Marcì, G. & Deganello, G., "Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: a systematic approach." Journal of the European Ceramic Society. 29, 439-450 (2009).
[55] Mohseni, H., Shokrollahi, H., Sharif, I. & Gheisari, Kh., "Magnetic and structural studies of the Mn-doped Mg–Zn ferrite nanoparticles synthesized by the glycine nitrate process." Journal of Magnetism and Magnetic Materials. 324, 3741-3747 (2012).
[56] Winiarska, K., Szczygieł, I., & Klimkiewicz, R., "Manganese–zinc ferrite synthesis by the sol–gel autocombustion method. Effect of the precursor on the ferrite’s catalytic properties." Industrial & Engineering Chemistry Research. 52, 353-361 (2012).
[57] Topkaya, R., Kurtan, U., Baykal, A. & Toprak, M.S., "Polyvinylpyrrolidone (PVP)/MnFe2O4 nanocomposite: sol–gel autocombustion synthesis and its magnetic characterization." Ceramics International. 39, 5651-5658 (2013).
[58] Murugesan, C., Sathyamoorthy, B. & Chandrasekaran, G., "Structural, dielectric and magnetic properties of Gd substituted manganese ferrite nanoparticles." Phys. Scr. 90, 085809 (2015).
[59] Azadmanjiri, J., "Preparation of Mn–Zn ferrite nanoparticles from chemical sol–gel combustion method and the magnetic properties after sintering." Journal of Non-Crystalline Solids. 353, 4170-4173 (2007).
[60] Ebrahimi, S.S., Masoudpanah, S.M., Amiri, H. & Yousefzadeh, M., "Magnetic properties of MnZn ferrite nanoparticles obtained by SHS and sol-gel autocombustion techniques." Ceramics International. 40, 6713-6718 (2014).
[61] Shirsath, S.E., Toksha, B.G., Kadam, R.H., Patange, S.M., Mane, D.R. et al. "Doping effect of Mn2+ on the magnetic behavior in Ni–Zn ferrite nanoparticles prepared by sol–gel auto-combustion." Journal of Physics and Chemistry of Solids. 71, 1669-1675 (2010).
[62] Sanpo, N., Berndt, C.C., Wen, C. & Wang, J., "New Approaches to the Study of Spinel Ferrite Nanoparticles for Biomedical Applications." Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques. 1417-1441 (2016).
[63] Sánchez, J., Cortés-Hernández, D.A., Escobedo-Bocardo, J.C., Jasso-Teràn, R.A. & Zugasti-Cruz, A., "Bioactive magnetic nanoparticles of Fe–Ga synthesized by sol–gel for their potential use in hyperthermia treatment." J Mater Sci: Mater Med. 25, 2237-2242 (2014).
[64] Sánchez, J., Cortés-Hernández, D.A., Escobedo-Bocardo, J.C., Almanza-Robles, J.M., Reyes-Rodríguez, P.Y. et al. "Sol-gel synthesis of MnxGa1−xFe2O4 nanoparticles as candidates for hyperthermia treatment." Ceramics International. 42, 13755-13760 (2016).
[65] Sánchez, J., Cortés-Hernández, D.A., Escobedo-Bocardo, J.C., Almanza-Robles, J.M., Reyes-Rodríguez, P.Y. et al. "Synthesis of MnxGa1−xFe2O4 magnetic nanoparticles by thermal decomposition method for medical diagnosis applications." Journal of Magnetism and Magnetic Materials. 427, 272-275 (2017).
[66] Vamvakidis, K., Sakellari, D., Angelakeris, M. & Dendrinou-Samara, C., "Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization." J Nanopart Res. 15. 1743 (2013).
[67] Makridis, A., Topouridou, K., Tziomaki, M., Sakellari, D., Simeonidis, K. et al. "In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents." J. Mater. Chem. B. 2, 8390-8398 (2014).
[68] Zipare, K., Dhumal, J., Bandgar, S., Mathe, V. & Shahane, G., "Superparamagnetic manganese ferrite nanoparticles: synthesis and magnetic properties." Journal of Nanoscience and Nanoengineering. 1, 178-182 (2015).
[69] Rodrigues, A.R.O., Ramos, J.M.F., Gomes, I.T., Almeida, B.G., Araújo, J.P. et al. "Magnetoliposomes based on manganese ferrite nanoparticles as nanocarriers for antitumor drugs." RSC Adv.. 6, 17302-17313 (2016).
[70] Mazarío, E., Sánchez-Marcos, J., Menéndez, N., Cañete, M., Mayoral. A. et al. "High specific absorption rate and transverse relaxivity effects in manganese ferrite nanoparticles obtained by an electrochemical route." J. Phys. Chem. C. 119, 6828-6834 (2015).
[71] Huang, C.-C., Su, C.-H., Liao, M.-Y. & Yeh, C.-S., "Magneto-optical FeGa2O4 nanoparticles as dual-modality high contrast efficacy T2 imaging and cathodoluminescent agents." Physical Chemistry Chemical Physics. 11, 6331-6334 (2009).
[72] Laurent, S., Dutz, S., Häfeli, U.O. & Mahmoudi, M., "Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in colloid and interface science. 166, 8-23 (2011).
[73] Lima, E., Torres, T.E., Rossi, L.M., Rechenberg, H.R., Berquo, T.S. et al. "Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles." J Nanopart Res. 15, 1654 (2013).
[74] Cornell, R.M. & Schwertmann, U., "The iron oxides: structure, properties, reactions, occurrences and uses." John Wiley & Sons. (2003)
[75] Li, J., Yuan, H., Li, G., Liu, Y. & Leng, J., "Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrite nanoparticles." Journal of Magnetism and Magnetic Materials. 322, 3396-3400 (2010).
[76] Carter, C.B. & Norton, M.G., "Ceramic materials: science and engineering." Springer Science & Business Media. (2007).
[77] Briceño, S., Bramer-Escamilla, W., Silva, P., Delgado, G.E., Plaza, E. et al. "Effects of synthesis variables on the magnetic properties of CoFe 2 O 4 nanoparticles." Journal of Magnetism and Magnetic Materials. 324, 2926-2931 (2012).
[78] Sheng-Nan, S., Chao, W., Zan-Zan, Z., Yang-Long, H., Venkatraman, S.S. & Zhi-Chuan, X., "Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications." Chin. Phys. B. 23, 037503 (2014).
[79] Peng, E., Ding, J. & Xue J.M., "Concentration-dependent magnetic hyperthermic response of manganese ferrite-loaded ultrasmall graphene oxide nanocomposites." New J. Chem. 38, 2312-2319 (2014).