International Science Index

International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering

22
6138
Object Localization in Medical Images Using Genetic Algorithms
Abstract:

We present a genetic algorithm application to the problem of object registration (i.e., object detection, localization and recognition) in a class of medical images containing various types of blood cells. The genetic algorithm approach taken here is seen to be most appropriate for this type of image, due to the characteristics of the objects. Successful cell registration results on real life microscope images of blood cells show the potential of the proposed approach.

Paper Detail
1349
downloads
21
5261
Burst on Hurst Algorithm for Detecting Activity Patterns in Networks of Cortical Neurons
Abstract:

Electrophysiological signals were recorded from primary cultures of dissociated rat cortical neurons coupled to Micro-Electrode Arrays (MEAs). The neuronal discharge patterns may change under varying physiological and pathological conditions. For this reason, we developed a new burst detection method able to identify bursts with peculiar features in different experimental conditions (i.e. spontaneous activity and under the effect of specific drugs). The main feature of our algorithm (i.e. Burst On Hurst), based on the auto-similarity or fractal property of the recorded signal, is the independence from the chosen spike detection method since it works directly on the raw data.

Paper Detail
1045
downloads
20
11389
Comparison of Fricative Vocal Tract Transfer Functions Derived using Two Different Segmentation Techniques
Abstract:

The acoustic and articulatory properties of fricative speech sounds are being studied using magnetic resonance imaging (MRI) and acoustic recordings from a single subject. Area functions were derived from a complete set of axial and coronal MR slices using two different methods: the Mermelstein technique and the Blum transform. Area functions derived from the two techniques were shown to differ significantly in some cases. Such differences will lead to different acoustic predictions and it is important to know which is the more accurate. The vocal tract acoustic transfer function (VTTF) was derived from these area functions for each fricative and compared with measured speech signals for the same fricative and same subject. The VTTFs for /f/ in two vowel contexts and the corresponding acoustic spectra are derived here; the Blum transform appears to show a better match between prediction and measurement than the Mermelstein technique.

Paper Detail
1128
downloads
19
9042
Wavelet Compression of ECG Signals Using SPIHT Algorithm
Abstract:

In this paper we present a novel approach for wavelet compression of electrocardiogram (ECG) signals based on the set partitioning in hierarchical trees (SPIHT) coding algorithm. SPIHT algorithm has achieved prominent success in image compression. Here we use a modified version of SPIHT for one dimensional signals. We applied wavelet transform with SPIHT coding algorithm on different records of MIT-BIH database. The results show the high efficiency of this method in ECG compression.

Paper Detail
1707
downloads
18
9680
Extracting Tongue Shape Dynamics from Magnetic Resonance Image Sequences
Abstract:

An important problem in speech research is the automatic extraction of information about the shape and dimensions of the vocal tract during real-time speech production. We have previously developed Southampton dynamic magnetic resonance imaging (SDMRI) as an approach to the solution of this problem.However, the SDMRI images are very noisy so that shape extraction is a major challenge. In this paper, we address the problem of tongue shape extraction, which poses difficulties because this is a highly deforming non-parametric shape. We show that combining active shape models with the dynamic Hough transform allows the tongue shape to be reliably tracked in the image sequence.

Paper Detail
1139
downloads
17
9264
Bridging the Mental Gap between Convolution Approach and Compartmental Modeling in Functional Imaging: Typical Embedding of an Open Two-Compartment Model into the Systems Theory Approach of Indicator Dilution Theory
Abstract:

Functional imaging procedures for the non-invasive assessment of tissue microcirculation are highly requested, but require a mathematical approach describing the trans- and intercapillary passage of tracer particles. Up to now, two theoretical, for the moment different concepts have been established for tracer kinetic modeling of contrast agent transport in tissues: pharmacokinetic compartment models, which are usually written as coupled differential equations, and the indicator dilution theory, which can be generalized in accordance with the theory of lineartime- invariant (LTI) systems by using a convolution approach. Based on mathematical considerations, it can be shown that also in the case of an open two-compartment model well-known from functional imaging, the concentration-time course in tissue is given by a convolution, which allows a separation of the arterial input function from a system function being the impulse response function, summarizing the available information on tissue microcirculation. Due to this reason, it is possible to integrate the open two-compartment model into the system-theoretic concept of indicator dilution theory (IDT) and thus results known from IDT remain valid for the compartment approach. According to the long number of applications of compartmental analysis, even for a more general context similar solutions of the so-called forward problem can already be found in the extensively available appropriate literature of the seventies and early eighties. Nevertheless, to this day, within the field of biomedical imaging – not from the mathematical point of view – there seems to be a trench between both approaches, which the author would like to get over by exemplary analysis of the well-known model.

Paper Detail
897
downloads
16
15888
Quality-Controlled Compression Method using Wavelet Transform for Electrocardiogram Signals
Abstract:

This paper presents a new Quality-Controlled, wavelet based, compression method for electrocardiogram (ECG) signals. Initially, an ECG signal is decomposed using the wavelet transform. Then, the resulting coefficients are iteratively thresholded to guarantee that a predefined goal percent root mean square difference (GPRD) is matched within tolerable boundaries. The quantization strategy of extracted non-zero wavelet coefficients (NZWC), according to the combination of RLE, HUFFMAN and arithmetic encoding of the NZWC and a resulting look up table, allow the accomplishment of high compression ratios with good quality reconstructed signals.

Paper Detail
1162
downloads
15
15280
Effect of Non-Newtonian Behaviour of Blood on Pulsatile Flows in Stenotic Arteries
Abstract:

In this paper, we study the pulsatile flow of blood through stenotic arteries. The inner layer of arterial walls is modeled as a porous medium and human blood is assumed as an incompressible fluid. A numerical algorithm based on the finite element method is developed to simulate the blood flow through both the lumen region and the porous wall. The algorithm is then applied to study the flow behaviour and to investigate the significance of the non-Newtonian effect.

Paper Detail
1565
downloads
14
2266
Pattern Recognition Techniques Applied to Biomedical Patterns
Abstract:

Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.

Paper Detail
1509
downloads
13
12599
Application of Mutual Information based Least dependent Component Analysis (MILCA) for Removal of Ocular Artifacts from Electroencephalogram
Abstract:

The electrical potentials generated during eye movements and blinks are one of the main sources of artifacts in Electroencephalogram (EEG) recording and can propagate much across the scalp, masking and distorting brain signals. In recent times, signal separation algorithms are used widely for removing artifacts from the observed EEG data. In this paper, a recently introduced signal separation algorithm Mutual Information based Least dependent Component Analysis (MILCA) is employed to separate ocular artifacts from EEG. The aim of MILCA is to minimize the Mutual Information (MI) between the independent components (estimated sources) under a pure rotation. Performance of this algorithm is compared with eleven popular algorithms (Infomax, Extended Infomax, Fast ICA, SOBI, TDSEP, JADE, OGWE, MS-ICA, SHIBBS, Kernel-ICA, and RADICAL) for the actual independence and uniqueness of the estimated source components obtained for different sets of EEG data with ocular artifacts by using a reliable MI Estimator. Results show that MILCA is best in separating the ocular artifacts and EEG and is recommended for further analysis.

Paper Detail
1553
downloads
12
6430
Statistics over Lyapunov Exponents for Feature Extraction: Electroencephalographic Changes Detection Case
Abstract:

A new approach based on the consideration that electroencephalogram (EEG) signals are chaotic signals was presented for automated diagnosis of electroencephalographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. This paper presented the usage of statistics over the set of the Lyapunov exponents in order to reduce the dimensionality of the extracted feature vectors. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The selected Lyapunov exponents of the EEG signals were used as inputs of the MLPNN trained with Levenberg- Marquardt algorithm. The classification results confirmed that the proposed MLPNN has potential in detecting the electroencephalographic changes.

Paper Detail
1867
downloads
11
4875
Ranking Genes from DNA Microarray Data of Cervical Cancer by a local Tree Comparison
Abstract:

The major objective of this paper is to introduce a new method to select genes from DNA microarray data. As criterion to select genes we suggest to measure the local changes in the correlation graph of each gene and to select those genes whose local changes are largest. More precisely, we calculate the correlation networks from DNA microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to tumor progression. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth. This indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.

Paper Detail
1202
downloads
10
12795
Classification Control for Discrimination between Interictal Epileptic and Non – Epileptic Pathological EEG Events
Abstract:

In this study, the problem of discriminating between interictal epileptic and non- epileptic pathological EEG cases, which present episodic loss of consciousness, investigated. We verify the accuracy of the feature extraction method of autocross-correlated coefficients which extracted and studied in previous study. For this purpose we used in one hand a suitable constructed artificial supervised LVQ1 neural network and in other a cross-correlation technique. To enforce the above verification we used a statistical procedure which based on a chi- square control. The classification and the statistical results showed that the proposed feature extraction is a significant accurate method for diagnostic discrimination cases between interictal and non-interictal EEG events and specifically the classification procedure showed that the LVQ neural method is superior than the cross-correlation one.

Paper Detail
1017
downloads
9
1568
Superior Performances of the Neural Network on the Masses Lesions Classification through Morphological Lesion Differences
Abstract:

Purpose of this work is to develop an automatic classification system that could be useful for radiologists in the breast cancer investigation. The software has been designed in the framework of the MAGIC-5 collaboration. In an automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based generally on morphological lesion differences. A study in the space features representation is made and some classifiers are tested to distinguish the pathological regions from the healthy ones. The results provided in terms of sensitivity and specificity will be presented through the ROC (Receiver Operating Characteristic) curves. In particular the best performances are obtained with the Neural Networks in comparison with the K-Nearest Neighbours and the Support Vector Machine: The Radial Basis Function supply the best results with 0.89 ± 0.01 of area under ROC curve but similar results are obtained with the Probabilistic Neural Network and a Multi Layer Perceptron.

Paper Detail
1052
downloads
8
5920
Towards Automatic Recognition and Grading of Ganoderma Infection Pattern Using Fuzzy Systems
Abstract:

This paper deals with the extraction of information from the experts to automatically identify and recognize Ganoderma infection in oil palm stem using tomography images. Expert-s knowledge are used as rules in a Fuzzy Inference Systems to classify each individual patterns observed in he tomography image. The classification is done by defining membership functions which assigned a set of three possible hypotheses : Ganoderma infection (G), non Ganoderma infection (N) or intact stem tissue (I) to every abnormalities pattern found in the tomography image. A complete comparison between Mamdani and Sugeno style,triangular, trapezoids and mixed triangular-trapezoids membership functions and different methods of aggregation and defuzzification is also presented and analyzed to select suitable Fuzzy Inference System methods to perform the above mentioned task. The results showed that seven out of 30 initial possible combination of available Fuzzy Inference methods in MATLAB Fuzzy Toolbox were observed giving result close to the experts estimation.

Paper Detail
1209
downloads
7
11310
Suggestion of Ultrasonic System for Diagnosis of Functional Gastrointestinal Disorders: Finite Difference Analysis, Development and Clinical Trials
Abstract:
The disaster from functional gastrointestinal disorders has detrimental impact on the quality of life of the effected population and imposes a tremendous social and economic burden. There are, however, rare diagnostic methods for the functional gastrointestinal disorders. Our research group identified recently that the gastrointestinal tract well in the patients with the functional gastrointestinal disorders becomes more rigid than healthy people when palpating the abdominal regions overlaying the gastrointestinal tract. Objective of current study is, therefore, identify feasibility of a diagnostic system for the functional gastrointestinal disorders based on ultrasound technique, which can quantify the characteristics above. Two-dimensional finite difference (FD) models (one normal and two rigid model) were developed to analyze the reflective characteristic (displacement) on each soft-tissue layer responded after application of ultrasound signals. The FD analysis was then based on elastic ultrasound theory. Validation of the model was performed via comparison of the characteristic of the ultrasonic responses predicted by FD analysis with that determined from the actual specimens for the normal and rigid conditions. Based on the results from FD analysis, ultrasound system for diagnosis of the functional gastrointestinal disorders was developed and clinically tested via application of it to 40 human subjects with/without functional gastrointestinal disorders who were assigned to Normal and Patient Groups. The FD models were favorably validated. The results from FD analysis showed that the maximum displacement amplitude in the rigid models (0.12 and 0.16) at the interface between the fat and muscle layers was explicitly less than that in the normal model (0.29). The results from actual specimens showed that the maximum amplitude of the ultrasonic reflective signal in the rigid models (0.2±0.1Vp-p) at the interface between the fat and muscle layers was explicitly higher than that in the normal model (0.1±0.2 Vp-p). Clinical tests using our customized ultrasound system showed that the maximum amplitudes of the ultrasonic reflective signals near to the gastrointestinal tract well for the patient group (2.6±0.3 Vp-p) were generally higher than those in normal group (0.1±0.2 Vp-p). Here, maximum reflective signals was appeared at 20mm depth approximately from abdominal skin for all human subjects, corresponding to the location of the boundary layer close to gastrointestinal tract well. These findings suggest that our customized ultrasound system using the ultrasonic reflective signal may be helpful to the diagnosis of the functional gastrointestinal disorders.
Paper Detail
876
downloads
6
13752
Ultrasonic System for Diagnosis of Functional Gastrointestinal Disorders: Development, Verification and Clinical Trials
Abstract:
Functional gastrointestinal disorders affect millions of people spread all age regardless of race and sex. There are, however, rare diagnostic methods for the functional gastrointestinal disorders because functional disorders show no evidence of organic and physical causes. Our research group identified recently that the gastrointestinal tract well in the patients with the functional gastrointestinal disorders becomes more rigid than healthy people when palpating the abdominal regions overlaying the gastrointestinal tract. Aim of this study is, therefore, to develop a diagnostic system for the functional gastrointestinal disorders based on ultrasound technique, which can quantify the characteristic above related to the rigidity of the gastrointestinal tract well. Ultrasound system was designed. The system consisted of transmitter, ultrasonic transducer, receiver, TGC, and CPLD, and verified via a phantom test. For the phantom test, ten soft-tissue specimens were harvested from porcine. Five of them were then treated chemically to mimic a rigid condition of gastrointestinal tract well, which was induced by functional gastrointestinal disorders. Additionally, the specimens were tested mechanically to identify if the mimic was reasonable. The customized ultrasound system was finally verified through application to human subjects with/without functional gastrointestinal disorders (Normal and Patient Groups). It was identified from the mechanical test that the chemically treated specimens were more rigid than normal specimen. This finding was favorably compared with the result obtained from the phantom test. The phantom test also showed that ultrasound system well described the specimen geometric characteristics and detected an alteration in the specimens. The maximum amplitude of the ultrasonic reflective signal in the rigid specimens (0.2±0.1Vp-p) at the interface between the fat and muscle layers was explicitly higher than that in the normal specimens (0.1±0.0Vp-p). Clinical tests using our customized ultrasound system for human subject showed that the maximum amplitudes of the ultrasonic reflective signals near to the gastrointestinal tract well for the patient group (2.6±0.3Vp-p) were generally higher than those in normal group (0.1±0.2Vp-p). Here, maximum reflective signals was appeared at 20mm depth approximately from abdominal skin for all human subjects, corresponding to the location of the boundary layer close to gastrointestinal tract well. These results suggest that newly designed diagnostic system based on ultrasound technique may diagnose enough the functional gastrointestinal disorders.
Paper Detail
1112
downloads
5
13191
A Lossless Watermarking Based Authentication System For Medical Images
Abstract:
In this paper we investigate the watermarking authentication when applied to medical imagery field. We first give an overview of watermarking technology by paying attention to fragile watermarking since it is the usual scheme for authentication.We then analyze the requirements for image authentication and integrity in medical imagery, and we show finally that invertible schemes are the best suited for this particular field. A well known authentication method is studied. This technique is then adapted here for interleaving patient information and message authentication code with medical images in a reversible manner, that is using lossless compression. The resulting scheme enables on a side the exact recovery of the original image that can be unambiguously authenticated, and on the other side, the patient information to be saved or transmitted in a confidential way. To ensure greater security the patient information is encrypted before being embedded into images.
Paper Detail
1925
downloads
4
6982
Lung Nodule Detection in CT Scans
Abstract:
In this paper we describe a computer-aided diagnosis (CAD) system for automated detection of pulmonary nodules in computed-tomography (CT) images. After extracting the pulmonary parenchyma using a combination of image processing techniques, a region growing method is applied to detect nodules based on 3D geometric features. We applied the CAD system to CT scans collected in a screening program for lung cancer detection. Each scan consists of a sequence of about 300 slices stored in DICOM (Digital Imaging and Communications in Medicine) format. All malignant nodules were detected and a low false-positive detection rate was achieved.
Paper Detail
1236
downloads
3
7002
Automated ECG Segmentation Using Piecewise Derivative Dynamic Time Warping
Abstract:

Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG's. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna's two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna's method.

Paper Detail
1717
downloads
2
9878
EEG-Based Fractal Analysis of Different Motor Imagery Tasks using Critical Exponent Method
Abstract:

The objective of this paper is to characterize the spontaneous Electroencephalogram (EEG) signals of four different motor imagery tasks and to show hereby a possible solution for the present binary communication between the brain and a machine ora Brain-Computer Interface (BCI). The processing technique used in this paper was the fractal analysis evaluated by the Critical Exponent Method (CEM). The EEG signal was registered in 5 healthy subjects,sampling 15 measuring channels at 1024 Hz.Each channel was preprocessed by the Laplacian space ltering so as to reduce the space blur and therefore increase the spaceresolution. The EEG of each channel was segmented and its Fractaldimension (FD) calculated. The FD was evaluated in the time interval corresponding to the motor imagery and averaged out for all the subjects (each channel). In order to characterize the FD distribution,the linear regression curves of FD over the electrodes position were applied. The differences FD between the proposed mental tasks are quantied and evaluated for each experimental subject. The obtained results of the proposed method are a substantial fractal dimension in the EEG signal of motor imagery tasks and can be considerably utilized as the multiple-states BCI applications.

Paper Detail
1513
downloads
1
16891
Gene Network Analysis of PPAR-γ: A Bioinformatics Approach Using STRING
Abstract:

Gene networks present a graphical view at the level of gene activities and genetic functions and help us to understand complex interactions in a meaningful manner. In the present study, we have analyzed the gene interaction of PPAR-γ (peroxisome proliferator-activated receptor gamma) by search tool for retrieval of interacting genes. We find PPAR-γ is highly networked by genetic interactions with 10 genes: RXRA (retinoid X receptor, alpha), PPARGC1A (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha), NCOA1 (nuclear receptor coactivator 1), NR0B2 (nuclear receptor subfamily 0, group B, member 2), HDAC3 (histone deacetylase 3), MED1 (mediator complex subunit 1), INS (insulin), NCOR2 (nuclear receptor co-repressor 2), PAX8 (paired box 8), ADIPOQ (adiponectin) and it augurs well for the fact that obesity and several other metabolic disorders are inter related.

Paper Detail
3886
downloads