2357

10006623

Consensus of Multi-Agent Systems under the Special Consensus Protocols

Two consensus problems are considered in this
paper. One is the consensus of linear multi-agent systems with
weakly connected directed communication topology. The other
is the consensus of nonlinear multi-agent systems with strongly
connected directed communication topology. For the first problem,
a simplified consensus protocol is designed: Each child agent can
only communicate with one of its neighbors. That is, the real
communication topology is a directed spanning tree of the original
communication topology and without any cycles. Then, the necessary
and sufficient condition is put forward to the multi-agent systems can
be reached consensus. It is worth noting that the given conditions do
not need any eigenvalue of the corresponding Laplacian matrix of the
original directed communication network. For the second problem,
the feedback gain is designed in the nonlinear consensus protocol.
Then, the sufficient condition is proposed such that the systems can
be achieved consensus. Besides, the consensus interval is introduced
and analyzed to solve the consensus problem. Finally, two numerical
simulations are included to verify the theoretical analysis.

2356

10006686

Group Invariant Solutions of Nonlinear Time-Fractional Hyperbolic Partial Differential Equation

In this paper, we have investigated the nonlinear
time-fractional hyperbolic partial differential equation (PDE) for
its symmetries and invariance properties. With the application of
this method, we have tried to reduce it to time-fractional ordinary
differential equation (ODE) which has been further studied for exact
solutions.

2355

10005803

The Photon-Drag Effect in Cylindrical Quantum Wire with a Parabolic Potential

Using the quantum kinetic equation for electrons interacting with acoustic phonon, the density of the constant current associated with the drag of charge carriers in cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field and a laser radiation field is calculated. The density of the constant current is studied as a function of the frequency of electromagnetic wave, as well as the frequency of laser field and the basic elements of quantum wire with a parabolic potential. The analytic expression of the constant current density is numerically evaluated and plotted for a specific quantum wires GaAs/AlGaAs to show the dependence of the constant current density on above parameters. All these results of quantum wire compared with bulk semiconductors and superlattices to show the difference.

2354

10005813

Normalizing Logarithms of Realized Volatility in an ARFIMA Model

Modelling realized volatility with high-frequency returns is popular as it is an unbiased and efficient estimator of return volatility. A computationally simple model is fitting the logarithms of the realized volatilities with a fractionally integrated long-memory Gaussian process. The Gaussianity assumption simplifies the parameter estimation using the Whittle approximation. Nonetheless, this assumption may not be met in the finite samples and there may be a need to normalize the financial series. Based on the empirical indices S&P500 and DAX, this paper examines the performance of the linear volatility model pre-treated with normalization compared to its existing counterpart. The empirical results show that by including normalization as a pre-treatment procedure, the forecast performance outperforms the existing model in terms of statistical and economic evaluations.

2353

10005817

Loading Factor Performance of a Centrifugal Compressor Impeller: Specific Features and Way of Modeling

A loading factor performance is necessary for the modeling of centrifugal compressor gas dynamic performance curve. Measured loading factors are linear function of a flow coefficient at an impeller exit. The performance does not depend on the compressibility criterion. To simulate loading factor performances, the authors present two parameters: a loading factor at zero flow rate and an angle between an ordinate and performance line. The calculated loading factor performances of non-viscous are linear too and close to experimental performances. Loading factor performances of several dozens of impellers with different blade exit angles, blade thickness and number, ratio of blade exit/inlet height, and two different type of blade mean line configuration. There are some trends of influence, which are evident – comparatively small blade thickness influence, and influence of geometry parameters is more for impellers with bigger blade exit angles, etc. Approximating equations for both parameters are suggested. The next phase of work will be simulating of experimental performances with the suggested approximation equations as a base.

2352

10005864

Variational Evolutionary Splines for Solving a Model of Temporomandibular Disorders

The aim of this work is to modelize the occlusion of a
person with temporomandibular disorders as an evolutionary equation
and approach its solution by the construction and characterizing
of discrete variational splines. To formulate the problem, certain
boundary conditions have been considered. After showing the
existence and the uniqueness of the solution of such a problem, a
convergence result of a discrete variational evolutionary spline is
shown. A stress analysis of the occlusion of a human jaw with
temporomandibular disorders by finite elements is carried out in
FreeFem++ in order to prove the validity of the presented method.

2351

10005868

Hall Coefficient in the Presence of Strong Electromagnetic Waves Caused by Confined Electrons and Phonons in a Rectangular Quantum Wire

The analytic expression for the Hall Coefficient (HC) caused by the confined electrons in the presence of a strong electromagnetic wave (EMW) including the effect of phonon confinement in rectangular quantum wires (RQWs) is calculated by using the quantum kinetic equation for electrons in the case of electron - optical phonon scattering. It is because the expression of the HC for the confined phonon case contains indexes m, m’ which are specific to the phonon confinement. The expression in a RQW is different from that for the case of unconfined phonons in a RQW or in 2D. The results are numerically calculated and discussed for a GaAs/GaAsAl RQW. The numerical results show that HC in a RQW can have both negative and positive values. This is different from the case of the absence of EMW and the case presence of EMW including the effect of phonon unconfinement in a RQW. These results are also compared with those in the case of unconfined phonons in a RQW and confined phonons in a quantum well. The conductivity in the case of confined phonon has more resonance peaks compared with that in case of unconfined phonons in a RQW. This new property is the same in quantum well. All results are compared with the case of unconfined phonons to see differences.

2350

10005875

The Establishment of RELAP5/SNAP Model for Kuosheng Nuclear Power Plant

After the measurement uncertainty recapture (MUR) power uprates, Kuosheng nuclear power plant (NPP) was uprated the power from 2894 MWt to 2943 MWt. For power upgrade, several codes (e.g., TRACE, RELAP5, etc.) were applied to assess the safety of Kuosheng NPP. Hence, the main work of this research is to establish a RELAP5/MOD3.3 model of Kuosheng NPP with SNAP interface. The establishment of RELAP5/SNAP model was referred to the FSAR, training documents, and TRACE model which has been developed and verified before. After completing the model establishment, the startup test scenarios would be applied to the RELAP5/SNAP model. With comparing the startup test data and TRACE analysis results, the applicability of RELAP5/SNAP model would be assessed.

2349

10005904

Effect of Spatially Correlated Disorder on Electronic Transport Properties of Aperiodic Superlattices (GaAs/AlxGa1-xAs)

We examine the electronic transport properties in AlxGa1-xAs/GaAs superlattices. Using the transfer-matrix technique and the exact Airy function formalism, we investigate theoretically the effect of structural parameters on the electronic energy spectra of trimer thickness barrier (TTB). Our numerical calculations showed that the localization length of the states becomes more extended when the disorder is correlated (trimer case). We have also found that the resonant tunneling time (RTT) is of the order of several femtoseconds.

2348

10006039

Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation

Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.

2347

10006134

Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes

This paper is concerned with the development of a
fully implicit and purely Eulerian fluid-structure interaction method
tailored for the modeling of the large deformations of elastic
membranes in a surrounding Newtonian fluid. We consider a
simplified model for the mechanical properties of the membrane, in
which the surface strain energy depends on the membrane stretching.
The fully Eulerian description is based on the advection of a modified
surface tension tensor, and the deformations of the membrane are
tracked using a level set strategy. The resulting nonlinear problem
is solved by a Newton-Raphson method, featuring a quadratic
convergence behavior. A monolithic solver is implemented, and we
report several numerical experiments aimed at model validation and
illustrating the accuracy of the presented method. We show that
stability is maintained for significantly larger time steps.

2346

10006183

Bi-Lateral Comparison between NIS-Egypt and NMISA-South Africa for the Calibration of an Optical Time Domain Reflectometer

Calibration of Optical Time Domain Reflectometer (OTDR) has a crucial role for the accurate determination of fault locations and the accurate calculation of loss budget of long-haul optical fibre links during installation and repair. A comparison has been made between the Egyptian National Institute for Standards (NIS-Egypt) and the National Metrology institute of South Africa (NMISA-South Africa) for the calibration of an OTDR. The distance and the attenuation scales of a transfer OTDR have been calibrated by both institutes using their standards according to the standard IEC 61746-1 (2009). The results of this comparison have been compiled in this report.

2345

10006185

An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes

We present in this paper a fully implicit finite element
method tailored for the numerical modeling of inextensible fluidic
membranes in a surrounding Newtonian fluid. We consider a highly
simplified version of the Canham-Helfrich model for phospholipid
membranes, in which the bending force and spontaneous curvature
are disregarded. The coupled problem is formulated in a fully
Eulerian framework and the membrane motion is tracked using
the level set method. The resulting nonlinear problem is solved
by a Newton-Raphson strategy, featuring a quadratic convergence
behavior. A monolithic solver is implemented, and we report several
numerical experiments aimed at model validation and illustrating
the accuracy of the proposed method. We show that stability is
maintained for significantly larger time steps with respect to an
explicit decoupling method.

2344

10006191

Algorithms for Computing of Optimization Problems with a Common Minimum-Norm Fixed Point with Applications

This research is aimed to study a two-step iteration
process defined over a finite family of σ-asymptotically
quasi-nonexpansive nonself-mappings. The strong convergence
is guaranteed under the framework of Banach spaces with some
additional structural properties including strict and uniform
convexity, reflexivity, and smoothness assumptions. With similar
projection technique for nonself-mapping in Hilbert spaces, we
hereby use the generalized projection to construct a point within
the corresponding domain. Moreover, we have to introduce the use
of duality mapping and its inverse to overcome the unavailability
of duality representation that is exploit by Hilbert space theorists.
We then apply our results for σ-asymptotically quasi-nonexpansive
nonself-mappings to solve for ideal efficiency of vector optimization
problems composed of finitely many objective functions. We also
showed that the obtained solution from our process is the closest to
the origin. Moreover, we also give an illustrative numerical example
to support our results.

2343

10006216

Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory

This paper analyzes fundamental ideas and concepts related to neural networks, which provide the reader a theoretical explanation of Long Short-Term Memory (LSTM) networks operation classified as Deep Learning Systems, and to explicitly present the mathematical development of Backward Pass equations of the LSTM network model. This mathematical modeling associated with software development will provide the necessary tools to develop an intelligent system capable of predicting the behavior of licensed users in wireless cognitive radio networks.

2342

10006561

Behavior of Current in a Semiconductor Nanostructure under Influence of Embedded Quantum Dots

Motivated by recent experimental and theoretical developments, we investigate the influence of embedded quantum dot (EQD) of different geometries (lens, ring and pyramidal) in a double barrier heterostructure (DBH). We work with a general theory of quantum transport that accounts the tight-binding model for the spin dependent resonant tunneling in a semiconductor nanostructure, and Rashba spin orbital to study the spin orbit coupling. In this context, we use the second quantization theory for Rashba effect and the standard Green functions method. We calculate the current density as a function of the voltage without and in the presence of quantum dots. In the second case, we considered the size and shape of the quantum dot, and in the two cases, we worked considering the spin polarization affected by external electric fields. We found that the EQD generates significant changes in current when we consider different morphologies of EQD, as those described above. The first thing shown is that the current decreases significantly, such as the geometry of EQD is changed, prevailing the geometrical confinement. Likewise, we see that the current density decreases when the voltage is increased, showing that the quantum system studied here is more efficient when the morphology of the quantum dot changes.

2341

10006607

Travel Time Model for Cylinder Type Parking System

In this paper, we mainly analyze an automated parking system where the storage and retrieval requests are performed by a tower crane. In this parking system, the S/R crane which is located at the middle of the bottom of the cylinder parking area can rotate in both clockwise and counterclockwise and three kinds of movements can be done simultaneously. We develop some mathematical travel time models for the single command cycle under the random storage assignment using the characteristics of this system. Finally, we compare these travel models with discrete case and it is shown that these travel models display a good satisfactory performance.

2340

10006777

Numerical Example of Aperiodic Diffraction Grating

Diffraction grating is periodic module used in many
engineering fields, its geometrical conception gives interesting
properties of diffraction and interferences, a uniform and periodic
diffraction grating consists of a number of identical apertures that are
equally spaced, in this case, the amplitude of intensity distribution
in the far field region is generally modulated by diffraction pattern
of single aperture. In this paper, we study the case of aperiodic
diffraction grating with identical rectangular apertures where theirs
coordinates are modeled by square root function, we elaborate a
computer simulation comparatively to the periodic array with same
length and we discuss the numerical results.

2339

10005660

A Study of Numerical Reaction-Diffusion Systems on Closed Surfaces

The diffusion-reaction equations are important Partial Differential Equations in mathematical biology, material science, physics, and so on. However, finding efficient numerical methods for diffusion-reaction systems on curved surfaces is still an important and difficult problem. The purpose of this paper is to present a convergent geometric method for solving the reaction-diffusion equations on closed surfaces by an O(r)-LTL configuration method. The O(r)-LTL configuration method combining the local tangential lifting technique and configuration equations is an effective method to estimate differential quantities on curved surfaces. Since estimating the Laplace-Beltrami operator is an important task for solving the reaction-diffusion equations on surfaces, we use the local tangential lifting method and a generalized finite difference method to approximate the Laplace-Beltrami operators and we solve this reaction-diffusion system on closed surfaces. Our method is not only conceptually simple, but also easy to implement.

2338

10005661

A Numerical Method for Diffusion and Cahn-Hilliard Equations on Evolving Spherical Surfaces

In this paper, we present a simple effective numerical geometric method to estimate the divergence of a vector field over a curved surface. The conservation law is an important principle in physics and mathematics. However, many well-known numerical methods for solving diffusion equations do not obey conservation laws. Our presented method in this paper combines the divergence theorem with a generalized finite difference method and obeys the conservation law on discrete closed surfaces. We use the similar method to solve the Cahn-Hilliard equations on evolving spherical surfaces and observe stability results in our numerical simulations.

2337

10005672

Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides

This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As2S3 chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion.

2336

10005690

Investigating the Efficiency of Stratified Double Median Ranked Set Sample for Estimating the Population Mean

Stratified double median ranked set sampling (SDMRSS) method is suggested for estimating the population mean. The SDMRSS is compared with the simple random sampling (SRS), stratified simple random sampling (SSRS), and stratified ranked set sampling (SRSS). It is shown that SDMRSS estimator is an unbiased of the population mean and more efficient than SRS, SSRS, and SRSS. Also, by SDMRSS, we can increase the efficiency of mean estimator for specific value of the sample size. SDMRSS is applied on real life examples, and the results of the example agreed the theoretical results.

2335

10005715

Semilocal Convergence of a Three Step Fifth Order Iterative Method under Höolder Continuity Condition in Banach Spaces

In this paper, we study the semilocal convergence of
a fifth order iterative method using recurrence relation under the
assumption that first order Fréchet derivative satisfies the Hölder
condition. Also, we calculate the R-order of convergence and provide
some a priori error bounds. Based on this, we give existence and
uniqueness region of the solution for a nonlinear Hammerstein
integral equation of the second kind.

2334

10005777

Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations

Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations.

2333

10005831

On the Optimality of Blocked Main Effects Plans

In this article, experimental situations are considered
where a main effects plan is to be used to study m two-level factors
using n runs which are partitioned into b blocks, not necessarily
of same size. Assuming the block sizes to be even for all blocks,
for the case n ≡ 2 (mod 4), optimal designs are obtained with
respect to type 1 and type 2 optimality criteria in the class of designs
providing estimation of all main effects orthogonal to the block
effects. In practice, such orthogonal estimation of main effects is
often a desirable condition. In the wider class of all available m two
level even sized blocked main effects plans, where the factors do not
occur at high and low levels equally often in each block, E-optimal
designs are also characterized. Simple construction methods based on
Hadamard matrices and Kronecker product for these optimal designs
are presented.

2332

10005860

Optimization of Loudspeaker Part Design Parameters by Air Viscosity Damping Effect

This study optimized the design parameters of a cone loudspeaker as an example of high flexibility of the product design. We developed an acoustic analysis software program that considers the impact of damping caused by air viscosity. In sound reproduction, it is difficult to optimize each parameter of the loudspeaker design. To overcome the limitation of the design problem in practice, this study presents an acoustic analysis algorithm to optimize the design parameters of the loudspeaker. The material character of cone paper and the loudspeaker edge were the design parameters, and the vibration displacement of the cone paper was the objective function. The results of the analysis showed that the design had high accuracy as compared to the predicted value. These results suggested that although the parameter design is difficult, with experience and intuition, the design can be performed easily using the optimized design found with the acoustic analysis software.

2331

10006599

Conjugate Gradient Algorithm for the Symmetric Arrowhead Solution of Matrix Equation AXB=C

Based on the conjugate gradient (CG) algorithm, the constrained matrix equation AXB=C and the associate optimal approximation problem are considered for the symmetric arrowhead matrix solutions in the premise of consistency. The convergence results of the method are presented. At last, a numerical example is given to illustrate the efficiency of this method.

2330

10007147

Four Positive Almost Periodic Solutions to an Impulsive Delayed Plankton Allelopathy System with Multiple Exploit (or Harvesting) Terms

In this paper, we obtain sufficient conditions for the
existence of at least four positive almost periodic solutions to an
impulsive delayed periodic plankton allelopathy system with multiple
exploited (or harvesting) terms. This result is obtained through the
use of Mawhins continuation theorem of coincidence degree theory
along with some properties relating to inequalities.

2329

10005420

On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid

A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated.

2328

10005421

A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode

Dynamics of cathode spot has become a major part
of vacuum arc discharge with its high academic interest and
wide application potential. In this article, using a three-dimensional
statistical model, we simulate the distribution of the ignition
probability of a new cathode spot occurring in different magnetic
pressure on old cathode spot surface and at different arcing time.
This model for the ignition probability of a new cathode spot was
proposed in two typical situations, one by the pure isotropic random
walk in the absence of an external magnetic field, other by the
retrograde motion in external magnetic field, in parallel with the
cathode surface. We mainly focus on developed relationship between
the ignition probability density distribution of a new cathode spot and
the external magnetic field.